Matemática, perguntado por lemos19, 1 ano atrás

construa o gráfico da função polinomial do 1° grau f (x)=2x-1

Soluções para a tarefa

Respondido por GabrielSPFC
4
Atribua valores aleatórios a x, vai encontrar valores para f(x). Depois é só substituir no plano cartesiano.
Veja:
f(0)= -1
f(1)= 1
f(2)= 3

E assim por diante. Por definição sabemos que funções do primeiro grau são definidas por retas, e como o x>0 a reta é crescente.

lemos19: obrigada
Respondido por adjemir
11
Vamos lá.

Veja, Lemos, que o gráfico de uma equação do 1º grau é bem fácil de construir.
Basta que você dê apenas dois valores: primeiro você faz o "x" igual a zero e encontra o "y" correspondente; depois faz y = 0 e encontra o "x" correspondente.
Vamos fazer isso e você verá que é bem fácil. Veja:

i) Fazendo x = 0 na função da sua questão que é: y = 2x - 1 (veja que f(x) poderá ser substituído por "y" sem qualquer problema, ok?)

y = 2*0 - 1
y = 0 - 1
y = - 1 <--- Este é o valor da ordenada "y" quando a abscissa "x" for igual a zero. Então você marca o ponto (0; -1).

ii) Fazendo y = 0 na função da sua questão que é: y = 2x - 1, teremos:

0 = 2x - 1 ---- passando "-1" para o 1º membro, teremos:
1 = 2x ---- vamos apenas inverter, ficando:
2x = 1
x = 1/2 <---Este é o valor da abscissa "x" quando a ordenada "y" for igual a zero.
Então você marca o ponto (1/2; 0).

iii) Assim, você já tem os dois pontos para marcar nos eixos coordenados, que serão os pontos: (0; -1) e (1/2; 0).
Agora é só tomar uma régua e passar uma reta ligando esses dois pontos e pronto: já terá o gráfico construído da equação da sua questão [y = 2x-1].
Apenas pra você ter uma ideia visual, veja o gráfico da equação da sua questão no endereço abaixo e constate tudo o que se disse sobre ela, pois aqui no Brainly eu não sei como construir gráficos. A propósito, veja que se trata de uma função crescente, pois o seu termo "a' é positivo (o termo "a" em equações do 1º grau é o coeficiente de "x"). Veja lá:

http://www.wolframalpha.com/input/?i=f(x)+%3D+2x+-+1

É isso aí.
Deu pra entender bem?

OK?
Adjemir.

adjemir: Agradecemos ao tutor Manuel pela aprovação da nossa resposta. Um cordial abraço, amigo.
adjemir: Lemos, disponha e bastante sucesso. Um abraço.
Perguntas interessantes