Construa num mesmo sistema e eixos os gráficos de:
a) f(x) = 2x e g(x) = log₂ˣ
b)f(x) = (
)ˣ e g(x) = log
ˣ
Soluções para a tarefa
Respondido por
9
vamos lá...
a)
![y=2^x y=2^x](https://tex.z-dn.net/?f=y%3D2%5Ex)
X | Y
-2 | 1/4 ⇒ 2⁻²=(1/2)²=1/4 (-2,1/4)
-1 | 1/2 ⇒ 2⁻¹=1/2 (-1,1/2)
0 | 1 ⇒ 2⁰=1 (0,1)
1 | 2 ⇒ 2¹=2 (1,2)
2 | 4 ⇒ 2²=4 ( 2,4)
![g(x)=\log_2x g(x)=\log_2x](https://tex.z-dn.net/?f=g%28x%29%3D%5Clog_2x)
![X~~~|~Y \\ 1/4~|-2\mapsto2^y=1/4\mapsto2^y=2^{-2}\mapsto y=-2~~~(1/4,-2) \\ \\ 1/2~|-1\mapsto2^y=1/2\mapsto2^y=2^{-1} \mapsto y=-1~~(1/2,-1) \\ \\ 1~~~|~~0 \mapsto2^y=1\mapsto2^y=2^0\mapstoy=0~~~(1,0) \\ \\ 2~~~|~~1\mapsto2^y=1\mapsto2^y=2^1\mapsto y=1~~~(2,1) \\ \\ 4~~~|~~2 \mapsto2^y=4\mapsto2^y=2^2\mapstoy=2~~~(4,2) X~~~|~Y \\ 1/4~|-2\mapsto2^y=1/4\mapsto2^y=2^{-2}\mapsto y=-2~~~(1/4,-2) \\ \\ 1/2~|-1\mapsto2^y=1/2\mapsto2^y=2^{-1} \mapsto y=-1~~(1/2,-1) \\ \\ 1~~~|~~0 \mapsto2^y=1\mapsto2^y=2^0\mapstoy=0~~~(1,0) \\ \\ 2~~~|~~1\mapsto2^y=1\mapsto2^y=2^1\mapsto y=1~~~(2,1) \\ \\ 4~~~|~~2 \mapsto2^y=4\mapsto2^y=2^2\mapstoy=2~~~(4,2)](https://tex.z-dn.net/?f=X%7E%7E%7E%7C%7EY+%5C%5C+1%2F4%7E%7C-2%5Cmapsto2%5Ey%3D1%2F4%5Cmapsto2%5Ey%3D2%5E%7B-2%7D%5Cmapsto+y%3D-2%7E%7E%7E%281%2F4%2C-2%29+%5C%5C++%5C%5C+1%2F2%7E%7C-1%5Cmapsto2%5Ey%3D1%2F2%5Cmapsto2%5Ey%3D2%5E%7B-1%7D+%5Cmapsto+y%3D-1%7E%7E%281%2F2%2C-1%29+%5C%5C++%5C%5C+1%7E%7E%7E%7C%7E%7E0+%5Cmapsto2%5Ey%3D1%5Cmapsto2%5Ey%3D2%5E0%5Cmapstoy%3D0%7E%7E%7E%281%2C0%29+%5C%5C++%5C%5C+2%7E%7E%7E%7C%7E%7E1%5Cmapsto2%5Ey%3D1%5Cmapsto2%5Ey%3D2%5E1%5Cmapsto+y%3D1%7E%7E%7E%282%2C1%29+%5C%5C++%5C%5C+4%7E%7E%7E%7C%7E%7E2+%5Cmapsto2%5Ey%3D4%5Cmapsto2%5Ey%3D2%5E2%5Cmapstoy%3D2%7E%7E%7E%284%2C2%29)
---------------------------------
b)
![g(x)=\log_{ \frac{1}{2} }x \\ \\ X~~|~Y \\ 4~~~|~-2~\mapsto(1/2)^y=4\mapsto2^{-y}=2^2\mapsto-y=2\mapsto y=-2~~(4,-2) \\ \\ 2~~|~-1~\mapsto(1/2)^y=2\mapsto2^{-y}=2^1\mapsto-y=1\mapsto y=-1~~~(2,-1) \\ \\ 1~~|~~0\mapsto(1/2)^y=1\mapsto2^{-y}=2^0\mapsto y=0~~~(1,0) \\ \\ 1/2~|~1~\mapsto(1/2)^y=(1/2)^1\mapsto y=1~~~(1/2,1) \\ \\ 1/4~~|~2~\mapsto(1/2)^y=1/4\mapsto(1/2)^y=(1/2)^2\mapsto y=2~~~~(1/4,2) g(x)=\log_{ \frac{1}{2} }x \\ \\ X~~|~Y \\ 4~~~|~-2~\mapsto(1/2)^y=4\mapsto2^{-y}=2^2\mapsto-y=2\mapsto y=-2~~(4,-2) \\ \\ 2~~|~-1~\mapsto(1/2)^y=2\mapsto2^{-y}=2^1\mapsto-y=1\mapsto y=-1~~~(2,-1) \\ \\ 1~~|~~0\mapsto(1/2)^y=1\mapsto2^{-y}=2^0\mapsto y=0~~~(1,0) \\ \\ 1/2~|~1~\mapsto(1/2)^y=(1/2)^1\mapsto y=1~~~(1/2,1) \\ \\ 1/4~~|~2~\mapsto(1/2)^y=1/4\mapsto(1/2)^y=(1/2)^2\mapsto y=2~~~~(1/4,2)](https://tex.z-dn.net/?f=g%28x%29%3D%5Clog_%7B+%5Cfrac%7B1%7D%7B2%7D+%7Dx+%5C%5C++%5C%5C+X%7E%7E%7C%7EY+%5C%5C+4%7E%7E%7E%7C%7E-2%7E%5Cmapsto%281%2F2%29%5Ey%3D4%5Cmapsto2%5E%7B-y%7D%3D2%5E2%5Cmapsto-y%3D2%5Cmapsto+y%3D-2%7E%7E%284%2C-2%29+%5C%5C++%5C%5C+2%7E%7E%7C%7E-1%7E%5Cmapsto%281%2F2%29%5Ey%3D2%5Cmapsto2%5E%7B-y%7D%3D2%5E1%5Cmapsto-y%3D1%5Cmapsto+y%3D-1%7E%7E%7E%282%2C-1%29+%5C%5C++%5C%5C+1%7E%7E%7C%7E%7E0%5Cmapsto%281%2F2%29%5Ey%3D1%5Cmapsto2%5E%7B-y%7D%3D2%5E0%5Cmapsto+y%3D0%7E%7E%7E%281%2C0%29+%5C%5C++%5C%5C+1%2F2%7E%7C%7E1%7E%5Cmapsto%281%2F2%29%5Ey%3D%281%2F2%29%5E1%5Cmapsto+y%3D1%7E%7E%7E%281%2F2%2C1%29+%5C%5C++%5C%5C+1%2F4%7E%7E%7C%7E2%7E%5Cmapsto%281%2F2%29%5Ey%3D1%2F4%5Cmapsto%281%2F2%29%5Ey%3D%281%2F2%29%5E2%5Cmapsto+y%3D2%7E%7E%7E%7E%281%2F4%2C2%29)
a)
X | Y
-2 | 1/4 ⇒ 2⁻²=(1/2)²=1/4 (-2,1/4)
-1 | 1/2 ⇒ 2⁻¹=1/2 (-1,1/2)
0 | 1 ⇒ 2⁰=1 (0,1)
1 | 2 ⇒ 2¹=2 (1,2)
2 | 4 ⇒ 2²=4 ( 2,4)
---------------------------------
b)
Anexos:
![](https://pt-static.z-dn.net/files/dc7/8b7ca5afe91927e7268cf6046d960deb.jpg)
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Pedagogia,
1 ano atrás
Física,
1 ano atrás