Considere a sucessão dos infinitos múltiplos positivos de 4, escritos do seguinte modo:4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 . . .
Nessa sucessão, a 168 a posição deve ser ocupada pelo algarismo
(A) 6.
(B) 4.
(C) 2.
(D) 1.
(E) 0.
Soluções para a tarefa
Respondido por
1
O número de múltiplos de 4, ou de qualquer outro número, num determinado
intervalo é igual a (N-n)/4+1, onde N é o maior múltiplo de 4 no
intervalo e n, o menor. Isso vai ser útil nesse problema.
Os múltiplos de 4 de um algarismo colocam um termo nessa sequência, os múltiplos de 4 de dois algarismos colocam dois termos, os com três colocam três e assim sucessivamente. Contemos os múltiplos de 4 em determinados intervalos e contemos o número de termos que eles adicionam à sequência:
Entre 1 e 9 => 4 e 8 => 2 termos
Entre 10 e 99 => 12, 16, 20, ..., 92 e 96 => 22 múltiplos, 44 termos
Entre 100 e 240 => 100, 104, 108, ..., 240 => 36 múltiplos, 108 termos
Ao escrevermos os algarismos de 240 nessa sequência teremos 2+44+108=154 termos. Faltam 14 termos para chegar no termo desejado, ou seja, o 168º termo dessa sequência aparece como o dígito das dezenas do quarto múltiplo de 4 depois de 240; depois de escrevermos três múltiplos de 4 depois de 240, a saber, 244, 248 e 252 (adicionando 12 termos à sequência), e escrevendo o quarto múltiplo depois de 240 encontramos 256. Logo o 168º termo é ocupado pelo algarismo 5.
Não tem 5 como resposta nas alternativas :S + D:
Os múltiplos de 4 de um algarismo colocam um termo nessa sequência, os múltiplos de 4 de dois algarismos colocam dois termos, os com três colocam três e assim sucessivamente. Contemos os múltiplos de 4 em determinados intervalos e contemos o número de termos que eles adicionam à sequência:
Entre 1 e 9 => 4 e 8 => 2 termos
Entre 10 e 99 => 12, 16, 20, ..., 92 e 96 => 22 múltiplos, 44 termos
Entre 100 e 240 => 100, 104, 108, ..., 240 => 36 múltiplos, 108 termos
Ao escrevermos os algarismos de 240 nessa sequência teremos 2+44+108=154 termos. Faltam 14 termos para chegar no termo desejado, ou seja, o 168º termo dessa sequência aparece como o dígito das dezenas do quarto múltiplo de 4 depois de 240; depois de escrevermos três múltiplos de 4 depois de 240, a saber, 244, 248 e 252 (adicionando 12 termos à sequência), e escrevendo o quarto múltiplo depois de 240 encontramos 256. Logo o 168º termo é ocupado pelo algarismo 5.
Não tem 5 como resposta nas alternativas :S + D:
Respondido por
5
Olá, Adriana.
Cheguei ao mesmo resultado do colega Felipe Queiroz.
Múltiplos de 4 com 1 algarismo: 4 e 8, ou seja, 1.ª e 2.ª posições.
Múltiplos de 4 com 2 algarismos: 12 a 96.
Do 12 ao 96 há números de 2 algarismos, ou seja, da 3.ª posição até a -ésima = 49.ª posição.
Os múltiplos de 4 com 3 algarismos começam, portanto, na 50.ª posição: 100104108112... e assim por diante.
Na -ésima posição temos o número
Vamos procurar o valor de ao qual corresponde o número que contém a 168.ª posição.
O número é o número
Assim, na posição está o algarismo 2 e, portanto, na 168.ª posição está o algarismo 5.
Resposta: nenhuma das alternativas
Cheguei ao mesmo resultado do colega Felipe Queiroz.
Múltiplos de 4 com 1 algarismo: 4 e 8, ou seja, 1.ª e 2.ª posições.
Múltiplos de 4 com 2 algarismos: 12 a 96.
Do 12 ao 96 há números de 2 algarismos, ou seja, da 3.ª posição até a -ésima = 49.ª posição.
Os múltiplos de 4 com 3 algarismos começam, portanto, na 50.ª posição: 100104108112... e assim por diante.
Na -ésima posição temos o número
Vamos procurar o valor de ao qual corresponde o número que contém a 168.ª posição.
O número é o número
Assim, na posição está o algarismo 2 e, portanto, na 168.ª posição está o algarismo 5.
Resposta: nenhuma das alternativas
Perguntas interessantes