Matemática, perguntado por Rafaela2105043, 1 ano atrás

Considere a seguinte soma

S=3+33+333+3333+⋯+3...33

em que a primeira parcela é o número que tem um algarismo 3, a segunda parcela é o número que tem dois algarismos 3, a terceira parcela é o número que tem três algarismos 3, a quarta parcela é o número que tem quatro algarismos 3 e assim por diante até a última parcela que é o número que tem trezentos e trinta e três algarismos iguais a 3.
Quais são os dois últimos algarismos mais a direita do número S ?
Observação: esse dois últimos algarismos mais a direita são: o algarismo da dezena e o algarismo da unidade de S. Por exemplo, os dois últimos algarismos mais a direita do número 6803794 são 94.

Opções

(A) 19
(B) 29
(C) 39
(D) 49
(E) 59

Soluções para a tarefa

Respondido por viniciussuiciniv
1
se vc for pela lógica a unica alternativa que é divisivel por 3 que de um numero inteiro é a letra (c)  

Perguntas interessantes