Matemática, perguntado por 100ntaco, 5 meses atrás

Considerando log 8 =A calcule, em função do A, o valor do log 20

Soluções para a tarefa

Respondido por elizeugatao
1

\displaystyle \sf \log 8=A \\\\ \log2^3 = A \\\\  3\log 2=A \\\\ \log 2 = \frac{A}{3}

Queremos log 20 em função de A. Façamos :

\displaystyle \sf \log 20 = \log (4\cdot 5) \\\\ log(4\cdot 5) = \log 4+\log 5 \\\\  \log 4+\log 5 = \log 2^2 +\log \left(\frac{10}{2}\right) \\\\\\\log 2^2 +\log \left(\frac{10}{2}\right) =  2\log 2 +\log 10 -\log 2 \\\\\\ 2\log 2 +\log 10 -\log 2 = \log 2+\log 10 \\\\ \log 2+\log 10 = \frac{A}{3}+1\to \frac{A+3}{3} \\\\\\ Portanto : \\\\ \huge\boxed{\sf \log 20 = \frac{A+3}{3} }\checkmark

Perguntas interessantes