Matemática, perguntado por camiliivitoriacamilo, 9 meses atrás

Conservamos o índice comum e multiplicação ou dividimos os radicais

1) efetue as operações:

a)
 \sqrt{3 \times  \sqrt{4} }
b)
 \sqrt{6 \times  \sqrt{2} }
c)
 \sqrt{12 \times  \sqrt{12} }
d)
 \sqrt{3 \div  \sqrt{16} }
e)
 \sqrt{8 \times  \sqrt{9} }
f)
 \sqrt{12 \div  \sqrt{3} }
g)
 \sqrt{51 \div  \sqrt{2} }
h)
 \sqrt{600 \times  \sqrt{10} }
i)
 \sqrt{200 \times  \sqrt{6} }
Após encontrar os valores acima, realizar a simplificação por MMC

Soluções para a tarefa

Respondido por joaopasto37
1

Resposta:

mds isso tá mto dificil sei não desculpa


camiliivitoriacamilo: ta horrível mano, meu Deus
joaopasto37: psr eu tentei fazer so que
joaopasto37: tá mto ďificil
joaopasto37: é aula online que faz isso ne
camiliivitoriacamilo: simm
joaopasto37: nossa cê é mto gentil
joaopasto37: mto legal
camiliivitoriacamilo: a obg, você tbm
camiliivitoriacamilo: Se o professor explicasse seria melhor, mas tá impossível isso
joaopasto37: vdd
Respondido por Usuário anônimo
1

Explicação passo-a-passo:

a) \sf \sqrt{3}\cdot\sqrt{4}=\sqrt{3\cdot4}=\red{\sqrt{12}}

=> Simplificação:

\sf 12~~~~|~~2

\sf ~~6~~~~|~~2

\sf ~~3~~~~|~~3

\sf ~~1

\sf 12=2^2\cdot3

Assim:

\sf \sqrt{12}=\sqrt{2^2\cdot3}

\sf \red{\sqrt{12}=2\sqrt{3}}

b) \sf \sqrt{6}\cdot\sqrt{2}=\sqrt{6\cdot2}=\red{\sqrt{12}}

=> Simplificação:

\sf 12~~~~|~~2

\sf ~~6~~~~|~~2

\sf ~~3~~~~|~~3

\sf ~~1

\sf 12=2^2\cdot3

Assim:

\sf \sqrt{12}=\sqrt{2^2\cdot3}

\sf \red{\sqrt{12}=2\sqrt{3}}

c) \sf \sqrt{12}\cdot\sqrt{12}=\sqrt{12\cdot12}=\red{\sqrt{144}}

=> Simplificação:

\sf 144~~~~|~~2

\sf ~~72~~~~|~~2

\sf ~~36~~~~|~~2

\sf ~~18~~~~|~~2

\sf ~~~9~~~~~|~~3

\sf ~~~3~~~~~|~~3

\sf ~~1

\sf 144=2^4\cdot3^2

Assim:

\sf \sqrt{144}=\sqrt{2^4\cdot3^2}

\sf \sqrt{144}=\sqrt{(2^2)^2\cdot3^2}

\sf \sqrt{144}=2^2\cdot3

\sf \sqrt{144}=4\cdot3

\sf \red{\sqrt{144}=12}

d) \sf \sqrt{3}\div\sqrt{16}=\sqrt{3\div16}=\sqrt{0,1875}

\sf =\sqrt{\dfrac{3}{16}}

\sf =\red{\dfrac{\sqrt{3}}{4}}

e) \sf \sqrt{8}\cdot\sqrt{9}=\sqrt{8\cdot9}=\red{\sqrt{72}}

=> Simplificação:

\sf 72~~~~|~~2

\sf 36~~~~|~~2

\sf 18~~~~|~~2

\sf ~~9~~~~|~~3

\sf ~~3~~~~|~~3

\sf ~~1

\sf 72=2^3\cdot3^2

Assim:

\sf \sqrt{72}=\sqrt{2^3\cdot3^2}

\sf \sqrt{72}=\sqrt{2\cdot2^2\cdot3^2}

\sf \sqrt{72}=2\cdot3\sqrt{2}

\sf \red{\sqrt{72}=6\sqrt{2}}

f) \sf \sqrt{12}\div\sqrt{3}=\sqrt{12\div3}=\red{\sqrt{4}}

=> Simplificação:

\sf 4~~~~|~~2

\sf 2~~~~|~~2

\sf 1

\sf 4=2^2

Assim:

\sf \sqrt{4}=\sqrt{2^2}

\sf \red{\sqrt{4}=2}

g) \sf \sqrt{51}\div\sqrt{2}=\sqrt{51\div2}=\red{\sqrt{25,5}}

\sf =\sqrt{\dfrac{255}{10}}

\sf =\sqrt{\dfrac{2550}{100}}

\sf =\dfrac{\sqrt{2550}}{\sqrt{100}}

=> Simplificação:

\sf 2550~~~~~|~~2

\sf 1275~~~~~|~~3

\sf ~~425~~~~~|~~5

\sf ~~~85~~~~~~|~~5

\sf ~~~17~~~~~~|~~17

\sf ~~~~1

\sf 2550=2\cdot3\cdot5^2\cdot17

\sf 100~~~~~~|~~2

\sf ~~50~~~~~~|~~2

\sf ~~25~~~~~~|~~5

\sf ~~~~5~~~~~~|~~5

\sf ~~~~~1

\sf 100=2^2\cdot5^2

Assim:

\sf \dfrac{\sqrt{2550}}{\sqrt{100}}=\dfrac{\sqrt{2\cdot3\cdot5^2\cdot17}}{\sqrt{2^2\cdot5^2}}

\sf \dfrac{\sqrt{2550}}{\sqrt{100}}=\dfrac{5\sqrt{2\cdot3\cdot17}}{2\cdot5}

\sf \dfrac{\sqrt{2550}}{\sqrt{100}}=\dfrac{5\sqrt{102}}{10}

\sf \dfrac{\sqrt{2550}}{\sqrt{100}}=\red{\dfrac{\sqrt{102}}{2}}

h) \sf \sqrt{600}\cdot\sqrt{10}=\sqrt{600\cdot10}=\red{\sqrt{6000}}

=> Simplificação:

\sf 6000~~~~~|~~2

\sf 3000~~~~~|~~2

\sf 1500~~~~~|~~2

\sf ~~750~~~~~|~~2

\sf ~~375~~~~~|~~3

\sf ~~125~~~~~~|~~5

\sf ~~~25~~~~~~|~~5

\sf ~~~~~5~~~~~~|~~5

\sf ~~~~~1

\sf 6000=2^4\cdot3\cdot5^3

Assim:

\sf \sqrt{6000}=\sqrt{2^4\cdot3\cdot5^3}

\sf \sqrt{6000}=\sqrt{(2^2)^2\cdot5^2\cdot5\cdot3}

\sf \sqrt{6000}=2^2\cdot5\sqrt{5\cdot3}

\sf \sqrt{6000}=4\cdot5\sqrt{15}

\sf \red{\sqrt{6000}=20\sqrt{15}}

i) \sf \sqrt{200}\cdot\sqrt{6}=\sqrt{200\cdot6}=\red{\sqrt{1200}}

=> Simplificação:

\sf 1200~~~~~~~|~~2

\sf ~~600~~~~~~~|~~2

\sf ~~300~~~~~~~|~~2

\sf ~~150~~~~~~~|~~2

\sf ~~~75~~~~~~~~|~~3

\sf ~~~25~~~~~~~~|~~5

\sf ~~~~5~~~~~~~~~|~~5

\sf ~~~~~1

\sf 1200=2^4\cdot3\cdot5^2

Assim:

\sf \sqrt{1200}=\sqrt{2^4\cdot3\cdot5^2}

\sf \sqrt{1200}=\sqrt{(2^2)^2\cdot5^2\cdot3}

\sf \sqrt{1200}=2^2\cdot5\sqrt{3}

\sf \sqrt{1200}=4\cdot5\sqrt{3}

\sf \red{\sqrt{1200}=20\sqrt{3}}

Perguntas interessantes