Como surgiu a função quadrática?
Soluções para a tarefa
Resposta:
Por volta do ano 300 a. C., a função quadrática foi associada à ideia de equação do 2º grau. Momento em que o matemático grego Euclides desenvolveu uma nova técnica denominada Álgebra Geométrica.
Explicação passo-a-passo:
Eu acho que é isso
Espero muito ter ajudado ❤
Se puder me adicionar como melhor resposta ficarei muito grata
(◕ᴗ◕✿)
Podemos perceber que a função quadrática surgiu principalmente no Egito e na Babilônia e desde então se desenvolveu até chegar nos dias atuais.
Função Quadrática
A álgebra teve início no antigo Egito e na Babilônia, onde matemáticos chegaram a resolver equações lineares ( ax = b) e quadráticas (ax²+bx+c = 0). Os antigos babilônios resolviam equações quadráticas empregando quase todos os métodos que conhecemos atualmente.
As civilizações antigas escreviam as expressões algébricas utilizando abreviaturas. Os matemáticos árabes foram capazes de desenvolver a álgebra fundamental dos polinômios e usaram símbolos modernos.
As funções polinomiais do segundo grau são funções cuja expressão algébricas é da forma f(x) = ax²+bx+c, com a ≠ 0. A representação gráfica de uma função polinomial do segundo grau é uma curva chamada parábola.
Saiba mais sobre função do 2° e 1° grau: https://brainly.com.br/tarefa/3615
#SPJ2