como se resolve equações do 1° grau com encognitas
Soluções para a tarefa
Respondido por
1
Duas Incógnitas
Quando tratamos as equações do 1° grau com duas variáveis vimos que a equação x + y = 20 admite infinitas soluções, pois se não houver restrições como as do exemplo na página em questão, podemos atribuir qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 - x.

A equação x - y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções.
Como as equações x + y = 20 e x - y = 6admitem infinitas soluções podemos nos perguntar:
Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo tempo tanto a primeira, quanto à segunda equação?
Este é justamente o tema deste tópico que vamos tratar agora.
Quando tratamos as equações do 1° grau com duas variáveis vimos que a equação x + y = 20 admite infinitas soluções, pois se não houver restrições como as do exemplo na página em questão, podemos atribuir qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 - x.

A equação x - y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções.
Como as equações x + y = 20 e x - y = 6admitem infinitas soluções podemos nos perguntar:
Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo tempo tanto a primeira, quanto à segunda equação?
Este é justamente o tema deste tópico que vamos tratar agora.
Perguntas interessantes
Geografia,
8 meses atrás
História,
8 meses atrás
Português,
8 meses atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás