Matemática, perguntado por vadoinacio11, 1 ano atrás

como resolvo isto Senx - 0,5cotgx - 0,5 cossecx= 0

Soluções para a tarefa

Respondido por JoãoVictorGO
1
senx - 0,5/tgx - 0,5/senx = 0
senx - 0,5cosx/senx - 0,5/senx = 0
senx^2 - 0,5cosx - 0,5 = 0
senx^2 = 0,5cosx + 0,5

Lembre-se:
Senx^2 + Cosx^2 = 1
Senx^2 = 1 - Cosx^2

Agora iguale Senx^2.

0,5Cosx + 0,5 = 1 - Cosx^2
Cosx^2 + 0,5Cosx - 0,5 = 0

Substitua Cosx por uma variavel qualquer, vou igualar a x.

x^2 + 0,5x - 0,5 = 0
2x^2 + x - 1 = 0

Resolva as raizes da equaçao.

x = (-1 +- √1 + 8)/4
x' = (-1+3)/4 = 1/2
x" = (-1-3)/4 = -1

Entao cosx é igual a -1 e 1/2. Agora substitua esses valores para descobrir o valor de senx.

Senx^2 = 0,5Cosx + 0,5
Senx^2 = 0,5(-1) + 0,5
Senx^2 = 0
Senx = 0 -----> x = 0º ou 180º

Senx^2 = 0,5(1/2) + 0,5
Senx^2 = 0,75
Senx = √0,75
Senx = √(3/4)
Senx = √3/2 ------> x = 60º ou 120º

Entao, o valor de x pode ser 180º ou 60º, pois quando Cosx = -1 e Senx = 0 o angulo é 180º e quando Cosx = 1/2 e Senx = √3/2 o angulo é 60º.
Perguntas interessantes