Matemática, perguntado por rafaellab94, 1 ano atrás

Como resolvo essa integral indefinida?

 \int ( \sqrt 2  seny - e^y/2) dx

Soluções para a tarefa

Respondido por Niiya
2
\bullet\displaystyle\int\bigg[\sum\limits_{i=1}^{n}f_{i}(x)\bigg]\,dx=\sum\limits_{i=1}^{n}\int f_{i}(x)\,dx

(vulgo "a integral da soma é a soma das integrais")

Dessa propriedade, tiramos que

\bullet\displaystyle\int cf(x)\,dx=c\int f(x)\,dx

(constante multiplicando o integrando sai da integral)
_____________________________

\displaystyle\int\bigg[\sqrt{2}sen(y)-\dfrac{~e^{y}}{2}\bigg]\,dy=\int\sqrt{2}sen(y)\,dy-\int\dfrac{~e^{y}}{2}\,dy\\\\\\\int\bigg[\sqrt{2}sen(y)-\dfrac{~e^{y}}{2}\bigg]\,dy=\sqrt{2}\int sen(y)\,dy-\int\dfrac{1}{2}e^{y}\,dy\\\\\\\int\bigg[\sqrt{2}sen(y)-\dfrac{~e^{y}}{2}\bigg]\,dy=\sqrt{2}\int sen(y)\,dy-\dfrac{1}{2}\int e^{y}\,dy

Sabendo que

\dfrac{d}{dy}-cos(y)=sen(y)~~~e~~~\dfrac{d}{dy}e^{y}=e^{y}

temos que

\displaystyle\int sen(y)\,dy=-cos(y)+C_{1}~~~e~~~\int e^{y}\,dy=e^{y}+C_{2}

Logo:

\displaystyle\int\bigg[\sqrt{2}sen(y)-\dfrac{~e^{y}}{2}\bigg]\,dy=\sqrt{2}[-cos(y)]-\dfrac{1}{2}e^{y}+constante\\\\\\\boxed{\boxed{\int\bigg[\sqrt{2}sen(y)-\dfrac{~e^{y}}{2}\bigg]\,dy=-\sqrt{2}cos(y)-\dfrac{e^{y}}{2}+constante}}

rafaellab94: Muito obrigada!
Niiya: De nada :)
Perguntas interessantes