Matemática, perguntado por Holzz, 1 ano atrás

como resolver x²-5x/4=3/2​

Soluções para a tarefa

Respondido por Deskroot
49

Olá, boa tarde!

Resposta:

\boxed{\color{red}{\mathsf{x' \ \longrightarrow \ x=\dfrac{5+11}{8} \ \longrightarrow \ x=\dfrac{16^{~ :2}}{8^{~ :2}} \ \longrightarrow \ x=2}}}

\boxed{\color{red}{\mathsf{x" \ \longrightarrow \ x=\dfrac{5-11}{8} \ \longrightarrow \ x=-\dfrac{6^{~ :2}}{8^{~ :2}} \ \longrightarrow \ x=-\dfrac{3}{4}}}}

Explicação passo-a-passo:

\mathsf{x^2 - \dfrac{5x}{4} = \dfrac{3}{2}}

\mathsf{x^2 - \dfrac{5x}{4} - \dfrac{3}{2} =0}

Propriedade Distributiva

\mathsf{4x^2 +4 (-\dfrac{5x}{4} )+4(-\dfrac{3}{2}) =0}

\mathsf{4x^2 +\cancel{4}(-\dfrac{5x}{\cancel{4}} )+\cancel{4}(-\dfrac{3}{\cancel{2}}) =0}

\mathsf{4x^2 -5x -6=0}

Bhaskara

a = 4

b = - 5

c = - 6

\mathsf{x= \dfrac{5 \pm \sqrt{(-5)^2 -4 \cdot (4 \cdot -6)}}{8}}

\mathsf{x  =\dfrac{5 \pm \sqrt{25 -4 \cdot -24}}{8}}

\mathsf{x  =\dfrac{5 \pm \sqrt{25+96}}{8}}

\mathsf{x  =\dfrac{5 \pm \sqrt{121}}{8}}

\mathsf{x  =\dfrac{5 \pm 11}{8}}

\mathsf{x' \ \longrightarrow \ x=\dfrac{5+11}{8} \ \longrightarrow \ x=\dfrac{16^{~ :2}}{8^{~ :2}} \ \longrightarrow \ x=2}

\mathsf{x" \ \longrightarrow \ x=\dfrac{5-11}{8} \ \longrightarrow \ x=-\dfrac{6^{~ :2}}{8^{~ :2}} \ \longrightarrow \ x=-\dfrac{3}{4}}

==================== Espero ter ajudado ====================

Abraços


Holzz: muito obrigada
Deskroot: Desculpe a demora para responder.
Deskroot: Disponha :-)
Perguntas interessantes