Como resolver o sistema utilizando a regra de cramer?
Soluções para a tarefa
Respondido por
1
O teorema de cramer diz que x, y e z de um sistema pode ser encontrado por:
x = Dx / D
y = Dy / D
z = Dz / D
Ou seja, a determinante de x, y e z sobre a determinante do sistema.
De início, encontremos a determinante do sistema, pegando os termos que acompanham x,y e z.
![D= \left[\begin{array}{ccc}1&2&4\\2&-1&2\\3&-3&-1\end{array}\right] \\\\ D=1+12-24+12+4+6\\\\ \boxed{D=11} D= \left[\begin{array}{ccc}1&2&4\\2&-1&2\\3&-3&-1\end{array}\right] \\\\ D=1+12-24+12+4+6\\\\ \boxed{D=11}](https://tex.z-dn.net/?f=D%3D++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B2%26amp%3B4%5C%5C2%26amp%3B-1%26amp%3B2%5C%5C3%26amp%3B-3%26amp%3B-1%5Cend%7Barray%7D%5Cright%5D+%5C%5C%5C%5C+D%3D1%2B12-24%2B12%2B4%2B6%5C%5C%5C%5C+%5Cboxed%7BD%3D11%7D)
Agora, o determinante de x, substituindo sua coluna pelos números 5,8 e 7
![D_x= \left[\begin{array}{ccc}5&2&4\\8&-1&2\\7&-3&-1\end{array}\right]\\\\ D_x=5+28-96+28+16+30\\\\ \boxed{D_x=11} D_x= \left[\begin{array}{ccc}5&2&4\\8&-1&2\\7&-3&-1\end{array}\right]\\\\ D_x=5+28-96+28+16+30\\\\ \boxed{D_x=11}](https://tex.z-dn.net/?f=D_x%3D++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26amp%3B2%26amp%3B4%5C%5C8%26amp%3B-1%26amp%3B2%5C%5C7%26amp%3B-3%26amp%3B-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C+D_x%3D5%2B28-96%2B28%2B16%2B30%5C%5C%5C%5C+%5Cboxed%7BD_x%3D11%7D)
Então, o valor de x

Agora, Dy
![D_y=\left[\begin{array}{ccc}1&5&4\\2&8&2\\3&7&-1\end{array}\right]\\\\ D_y=-8+30+56-96+10-14\\\\ \boxed{D_y=-22} D_y=\left[\begin{array}{ccc}1&5&4\\2&8&2\\3&7&-1\end{array}\right]\\\\ D_y=-8+30+56-96+10-14\\\\ \boxed{D_y=-22}](https://tex.z-dn.net/?f=D_y%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B5%26amp%3B4%5C%5C2%26amp%3B8%26amp%3B2%5C%5C3%26amp%3B7%26amp%3B-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C+D_y%3D-8%2B30%2B56-96%2B10-14%5C%5C%5C%5C+%5Cboxed%7BD_y%3D-22%7D)
Então, o valor de y

Agora Dz
![D_z=\left[\begin{array}{ccc}1&2&5\\2&-1&8\\3&-3&7\end{array}\right]\\\\ D_z=-7+48-30+15-28+24\\\\ \boxed{D_z=22} D_z=\left[\begin{array}{ccc}1&2&5\\2&-1&8\\3&-3&7\end{array}\right]\\\\ D_z=-7+48-30+15-28+24\\\\ \boxed{D_z=22}](https://tex.z-dn.net/?f=D_z%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B2%26amp%3B5%5C%5C2%26amp%3B-1%26amp%3B8%5C%5C3%26amp%3B-3%26amp%3B7%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C+D_z%3D-7%2B48-30%2B15-28%2B24%5C%5C%5C%5C+%5Cboxed%7BD_z%3D22%7D)
Então, o valor de Z

Então, o valor do sistema possível determinado:

x = Dx / D
y = Dy / D
z = Dz / D
Ou seja, a determinante de x, y e z sobre a determinante do sistema.
De início, encontremos a determinante do sistema, pegando os termos que acompanham x,y e z.
Agora, o determinante de x, substituindo sua coluna pelos números 5,8 e 7
Então, o valor de x
Agora, Dy
Então, o valor de y
Agora Dz
Então, o valor de Z
Então, o valor do sistema possível determinado:
Perguntas interessantes