Matemática, perguntado por odairalebraop95qeg, 6 meses atrás

como resolver essas equações x-2x-15=0​

Anexos:

Soluções para a tarefa

Respondido por Luukcas
1

Resposta:

a)x1 = \frac{-(-1)+-\sqrt{-1^{2}-4*1-15 } }{2*1} \\\\\frac{1+-\sqrt{59} }{2}

b)

x1 = \frac{-6+-\sqrt{6^{2}-4*-1*-8 } }{2*-1} \\\frac{-6\sqrt{36-32} }{-2} \\\frac{-6+-2}{-2} \\\frac{-4}{-2} =2\\X2=-4

c)

x1=\frac{-7+-\sqrt[n]{7^{2}-4*1+5 } }{2*2} \\\\\frac{-7+-\sqrt{49-40} }{4} \\\frac{-7+-3}{4} \\-1\\x2= \frac{-10}{4} \\\\x2"=\frac{-5}{2}

x1= \frac{-7+-\sqrt{7^{2}-4*2*5 } }{2"2} \\\frac{-7+-\sqrt{49-40} }{4} \\\frac{-7+-3}{4} \\\frac{-4}{4} \\-1\\x2 =\frac{-10}{4} \\\frac{-5}{2}

d)

X1 =\frac{-(-2)+-\sqrt{-2^{2}-4*1*1 } }{2*1} \\\frac{2+-\sqrt{4-4} }{2} \\\frac{2+-0}{2} \\1\\x2= 1

e)

X1= \frac{-(-6)+-\sqrt{-6^{2}-4*1*9 } }{2*1} \\\frac{6+-\sqrt{36-36} }{2} \\\frac{6+-0}{2} \\3\\X2=3

f

x1= \frac{-1+-\sqrt{1^{2}-4*1-6 } }{2*1} \\\frac{1+-5}{2} \\3\\x2= 3

g)

x1=\frac{-(-3)+-\sqrt{-3^{2}-4*2*1 } }{2*2} \\\frac{3+-\sqrt{9-8} }{4} \\\frac{3+-1}{4} \\1\\x2=\frac{1}{2}

h

\frac{-(-5)+-\sqrt{-5^{2}-4*2*1 } }{2*2} \\\frac{5+-\sqrt{16} }{4} \\\frac{5+-4}{4} \\x1=\frac{9}{4} \\x2=\frac{1}{4}

Explicação passo a passo:


odairalebraop95qeg: muito obrigado pela ajuda
Perguntas interessantes