Matemática, perguntado por leiasousa97, 8 meses atrás

como resolver equações do 1 grau com uma incógnita com a imagem ​

Anexos:

Soluções para a tarefa

Respondido por Madacasgar
0
Colocar a incógnita para um lado e igualar aos demais números é assim resolver a equação
Respondido por yankelvin465
1

Em uma equação, temos uma igualdade, a qual separa a equação em dois membros. Do lado esquerdo da igualdade, vamos ter o primeiro membro, e do lado direito, o segundo membro.

ax + b = 0

(1º membro) = (2º membro)

Para manter a igualdade sempre verdadeira, devemos operar tanto no primeiro membro como no segundo, ou seja, se realizarmos uma operação no primeiro membro, devemos realizar a mesma operação no segundo membro. Essa ideia recebe o nome de princípio da equivalência.

15 = 15

15 + 3 = 15 + 3

18 = 18

18 – 30 = 18 – 30

– 12 = – 12

Veja que a igualdade permanece verdadeira desde que operemos de maneira simultânea nos dois membros da equação.

O princípio da equivalência é utilizado para determinar o valor da incógnita da equação, ou seja, determinar a raiz ou solução da equação. Para encontrar o valor de x, devemos utilizar o princípio da equivalência para isolar o valor da incógnita.

Veja um exemplo:

2x – 8 = 3x – 10

O primeiro passo é fazer com que o número – 8 desapareça do primeiro membro. Para isso, vamos somar o número 8 em ambos os lados da equação.

2x – 8 + 8 = 3x – 10 + 8

2x = 3x – 2

O próximo passo é fazer com que 3x desapareça do segundo membro. Para isso, vamos subtrair 3x em ambos os lados.

2x – 3x = 3x – 2 – 3x

– x = – 2

Como estamos à procura de x, e não de – x, vamos agora multiplicar ambos os lados por (– 1).

(– 1)· (– x) = (– 2) · (– 1)

x = 2

O conjunto solução da equação é, portanto, S = {2}.

Perguntas interessantes