Matemática, perguntado por wellintonrolle, 1 ano atrás

como resolver a matriz a=(aij) 2x3 talquer aij=(i+j)²

Soluções para a tarefa

Respondido por ThalesPalandi
1
  \left[\begin{array}{ccc}a11&a12&a13\\a21&a22&a23\end{array}\right]

usando a formula aij=(1+j)²
a11= (1+1)²=4
a12=(1+2)²=9
a13=(1+3)²=16
a21=(2+1)²=9
a22=(2+2)²=16
a23=(2+3)²=25

A=  \left[\begin{array}{ccc}4&9&16\\9&16&25\end{array}\right]
Respondido por PeH
1
\text{A} = [a_{ij} = (i + j^2)]_{\text{2x3}} \\\\\\ \text{A} = \left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\end{array}\right] \\\\\\ \text{A} = \left[\begin{array}{ccc}(i = 1, j = 1)&(i = 1, j = 2)&(i = 1, j = 3)\\(i = 2, j = 1)&(i = 2, j = 2)&(i = 2, j = 3)\end{array}\right] \\\\\\ \text{A} = \left[\begin{array}{ccc}(1 + 1^2)&(1 + 2^2)&(1 + 3^2)\\(2 + 1^2)&(2 + 2^2)&(2 + 3^2)\end{array}\right]


\boxed{\text{A} = \left[\begin{array}{ccc}2&5&10\\3&6&11\end{array}\right]}
Perguntas interessantes