Como resolver 5^(x²+2x)=1 ?
Soluções para a tarefa
Respondido por
2
gustavocanabarro:
rsrsrsrs
Respondido por
2
Iguale as bases para que possam ser eliminadas.
Lembrando da propriedade de potência: todo número elevado a zero é igual a 1, se queremos igualar as bases, então colocamos 1=5^0.
![5^{ x^{2} +2x}=1\to\\\\ \not5^{ x^{2} +2x}=\not5^0\to\\\\\\ x^{2} +2x=0\to~~Por~~Evid\^encia:\\\\\\ x(x+2)=0\\\\\\ \boxed{x=0}\\\\x+2=0\to~~\boxed{x=-2}\\\\\\\\ \large\boxed{\boxed{S=\{-2~;~0\}}} 5^{ x^{2} +2x}=1\to\\\\ \not5^{ x^{2} +2x}=\not5^0\to\\\\\\ x^{2} +2x=0\to~~Por~~Evid\^encia:\\\\\\ x(x+2)=0\\\\\\ \boxed{x=0}\\\\x+2=0\to~~\boxed{x=-2}\\\\\\\\ \large\boxed{\boxed{S=\{-2~;~0\}}}](https://tex.z-dn.net/?f=5%5E%7B+x%5E%7B2%7D+%2B2x%7D%3D1%5Cto%5C%5C%5C%5C+%5Cnot5%5E%7B+x%5E%7B2%7D+%2B2x%7D%3D%5Cnot5%5E0%5Cto%5C%5C%5C%5C%5C%5C++x%5E%7B2%7D+%2B2x%3D0%5Cto%7E%7EPor%7E%7EEvid%5C%5Eencia%3A%5C%5C%5C%5C%5C%5C+x%28x%2B2%29%3D0%5C%5C%5C%5C%5C%5C+%5Cboxed%7Bx%3D0%7D%5C%5C%5C%5Cx%2B2%3D0%5Cto%7E%7E%5Cboxed%7Bx%3D-2%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Clarge%5Cboxed%7B%5Cboxed%7BS%3D%5C%7B-2%7E%3B%7E0%5C%7D%7D%7D)
Lembrando da propriedade de potência: todo número elevado a zero é igual a 1, se queremos igualar as bases, então colocamos 1=5^0.
Perguntas interessantes