Como resolve este exercícico de Álgebra Moderna?
H ∩ K é subconjunto de G. Calcule [G : K ∩ K]
Soluções para a tarefa
Respondido por
2
Boa noite!
Solução!
Para resolver esse exercício é importante lembra do lema de Poincaré.
O lema de Poincare esta relacionado as inclusões no grupos finitamentes gerados.
![\forall~~a~~~~a\in G~~tem-se\\\\\\\
(H\cap K)a=Ha\cap Ka~~as~~inclus\~oes~~s\~ao~~obvias.\\\\\\\\
(H\cap K)a \subset Ha~~e~~(H\cap K)a\subset Ka \Rightarrow (H\cap K)a\subset Ha\capKa\\\\\\
Logo~~se~~x \in Ha\cap Ka~~ent\~ao~~ x=ha=Ka,h\in H,k \in K\\\\\\\\
~~portanto,h=k \in H \cap k~~se~~x \in (H\cap K)a~~concluimos~~que\\\\\\\boxed{(Ha\cap Ka) \subset (H\cap K)a} \forall~~a~~~~a\in G~~tem-se\\\\\\\
(H\cap K)a=Ha\cap Ka~~as~~inclus\~oes~~s\~ao~~obvias.\\\\\\\\
(H\cap K)a \subset Ha~~e~~(H\cap K)a\subset Ka \Rightarrow (H\cap K)a\subset Ha\capKa\\\\\\
Logo~~se~~x \in Ha\cap Ka~~ent\~ao~~ x=ha=Ka,h\in H,k \in K\\\\\\\\
~~portanto,h=k \in H \cap k~~se~~x \in (H\cap K)a~~concluimos~~que\\\\\\\boxed{(Ha\cap Ka) \subset (H\cap K)a}](https://tex.z-dn.net/?f=%5Cforall%7E%7Ea%7E%7E%7E%7Ea%5Cin+G%7E%7Etem-se%5C%5C%5C%5C%5C%5C%5C%0A%28H%5Ccap+K%29a%3DHa%5Ccap+Ka%7E%7Eas%7E%7Einclus%5C%7Eoes%7E%7Es%5C%7Eao%7E%7Eobvias.%5C%5C%5C%5C%5C%5C%5C%5C%0A%28H%5Ccap+K%29a+%5Csubset+Ha%7E%7Ee%7E%7E%28H%5Ccap+K%29a%5Csubset+Ka+%5CRightarrow+%28H%5Ccap+K%29a%5Csubset+Ha%5CcapKa%5C%5C%5C%5C%5C%5C%0ALogo%7E%7Ese%7E%7Ex+%5Cin+Ha%5Ccap+Ka%7E%7Eent%5C%7Eao%7E%7E+x%3Dha%3DKa%2Ch%5Cin+H%2Ck+%5Cin+K%5C%5C%5C%5C%5C%5C%5C%5C%0A%7E%7Eportanto%2Ch%3Dk+%5Cin+H+%5Ccap+k%7E%7Ese%7E%7Ex+%5Cin+%28H%5Ccap+K%29a%7E%7Econcluimos%7E%7Eque%5C%5C%5C%5C%5C%5C%5Cboxed%7B%28Ha%5Ccap+Ka%29+%5Csubset+%28H%5Ccap+K%29a%7D)
![Sendo~~que~~todos~~os~~nu\´meros ~~a~~do~~lado~~direito~~de~~Ha Sendo~~que~~todos~~os~~nu\´meros ~~a~~do~~lado~~direito~~de~~Ha](https://tex.z-dn.net/?f=Sendo%7E%7Eque%7E%7Etodos%7E%7Eos%7E%7Enu%5C%C2%B4meros+%7E%7Ea%7E%7Edo%7E%7Elado%7E%7Edireito%7E%7Ede%7E%7EHa)
![s\~ao~finito~~e~~tem~~para~~as~~classes~~Ka,por~~serem ~~ambos
s\~ao~finito~~e~~tem~~para~~as~~classes~~Ka,por~~serem ~~ambos](https://tex.z-dn.net/?f=%0As%5C%7Eao%7Efinito%7E%7Ee%7E%7Etem%7E%7Epara%7E%7Eas%7E%7Eclasses%7E%7EKa%2Cpor%7E%7Eserem+%7E%7Eambos)
![subgrupos,segue~~imediatamente~~todos~~os~~n\´umeros~~possiveis subgrupos,segue~~imediatamente~~todos~~os~~n\´umeros~~possiveis](https://tex.z-dn.net/?f=subgrupos%2Csegue%7E%7Eimediatamente%7E%7Etodos%7E%7Eos%7E%7En%5C%C2%B4umeros%7E%7Epossiveis)
![(inclus\~ao)~Ha \cap Ka~~tambem~~e\´~~finito (inclus\~ao)~Ha \cap Ka~~tambem~~e\´~~finito](https://tex.z-dn.net/?f=%28inclus%5C%7Eao%29%7EHa+%5Ccap+Ka%7E%7Etambem%7E%7Ee%5C%C2%B4%7E%7Efinito)
![Conclus\~ao~~[G:H \capK]~~e\´~~finito Conclus\~ao~~[G:H \capK]~~e\´~~finito](https://tex.z-dn.net/?f=Conclus%5C%7Eao%7E%7E%5BG%3AH+%5CcapK%5D%7E%7Ee%5C%C2%B4%7E%7Efinito)
Boa noite!
Bons estudos!
Solução!
Para resolver esse exercício é importante lembra do lema de Poincaré.
O lema de Poincare esta relacionado as inclusões no grupos finitamentes gerados.
Boa noite!
Bons estudos!
Perguntas interessantes
Matemática,
11 meses atrás
Artes,
11 meses atrás
Pedagogia,
11 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Lógica,
1 ano atrás
Lógica,
1 ano atrás