Matemática, perguntado por tarcisiocesari, 1 ano atrás

como fazer equaçao do segundo grau

Soluções para a tarefa

Respondido por Usuário anônimo
8
Tarcisio, tudo bem? Costumamos dividir as equações de 2° grau em duas etapas.

1° Calculamos o Delta, que dá-se pela fórmula:

\boxed{\Delta = b^{2} - 4 \cdot a \cdot c}

Onde a, b e c são os coeficientes da equação. Pois, equações de 2° grau, quando completas (ou seja, possui todos os coeficientes), é definida assim:

ax² + bx + c = 0

Vamos ver como é isto na prática:

Temos a seguinte equação:

x^{2}-5x+4=0

Temos que:
coeficiente a = número acompanhado do x elevado ao quadrado (neste caso vale 1)
coeficiente b = número acompanhado do x (neste caso -5)
coeficiente c = número sozinho (neste caso 4)

Jogando naquela fórmula de Delta:

x^{2}-5x+4=0 \\\\  \Delta = b^{2} - 4 \cdot a \cdot c \\\\ \Delta = (-5)^{2} - 4 \cdot (1) \cdot (4) \\\\ \Delta = 25 - 16 \\\\ \Delta = 9

Agora vamos para a segunda parte, que dá-se pela fórmula:

x = \frac{-b \pm \sqrt{\Delta}}{2 \cdot a} \\\\ x = \frac{-(-5) \pm \sqrt{9}}{2 \cdot 1} \\\\ x = \frac{5 \pm 3}{2} \\\\ agora \ temos \ duas \ solu\c{c}\~{o}es \\\\ x' = \frac{5 + 3}{2} = \frac{8}{2} = \boxed{4} \\\\ x'' = \frac{5 - 3}{2} = \frac{2}{2} = \boxed{1}

Portanto, temos duas soluções (sempre coloque solução por ser equação):

\boxed{\boxed{S = \{1;4\}}}

Duas dicas:- quando estiver faltando algum coeficiente, o considere valendo zero.
                  - delta > 0 (mais de uma solução); delta = 0 (uma solução); delta < 0 (não existe solução nos reais)

Mas isso tudo não precisa ficar decorando, você irá perceber ao fazer exercícios.

Ah, e outra coisa, não se assuste se aparecer algo assim:

x = \frac{-b \pm \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}

A única coisa que mudou é que não se dividiu em duas partes, ou seja, jogamos a fórmula de delta pra sair diretamente na raiz. Mas é a MESMÍSSIMA COISA.

Última coisa: Não existe nas equações de segundo grau coeficiente "a" valendo zero, pois zero vezes qualquer coisa é zero, e como "a" acompanha a incógnita elevada ao quadrado, se for multiplicada por zero, a equação deixará de ser de 2° grau.
Respondido por EinsteinBrainly
0

➡➡ Resposta  ⬅ ⬅

➱ O que é uma equação?  

Equação é uma conta matemática que envolve letras ou seja são chamadas incógnitas as mais usadas são X e Y. E possui muitos graus iremos ver a baixo a do segundo grau.

➱ O que é uma equação de segundo grau?  

É uma equação que possui a incógnita (letra) com maior grau igual a 2.

➱ Como fazer uma resolução de equação normal:  

➤ Para resolvermos equações devemos separar os  números com incógnitas que estão na equação para o lado esquerdo do igual.

➤ E devemos passar os números sem incógnitas para o lado direito do igual.

➤ Quando os números estiver do lado errado do igual mudamos o sinal toda vez que mudar de lado.

➱ Como fazer resolução da equação de segundo grau:  

Tem várias formas mas a mais conhecida e mais usada é a forma de Bhaskara, que é uma forma que descobre a equação pelos seus coeficientes. Mas podemos fazer por eliminação das letras também e usando um pouco das regrinhas abaixo.

Regrinhas:  

➢ Números com incógnitas = lado esquerdo do igual .

➢ Números sem incógnitas = lado direito do igual .

➢ Mudando de lado = mude o sinal também.

➱ Como saber se há raízes reais:  

Vendo se o número possui um sinal negativo ou positivo se o número não tiver sinal nenhum ele é considerado positivo.

===========================================================

➡➡ Exemplos ⬅⬅

➱ Equação normal:

3x+4 - 5= 8x-5

3x - 8x = -5 +5

-5x = 0

x= 0/-5

x= 0  

----------------------------------------

Equação na forma de Bhaskara:

-b ± √∆ × 1/2a

∆ = b² - 4ac

x² - 5x + 6

a = 3

b = -8

c = 4

∆ = (-8)² - 4 × 3 × 4

∆ = 64 - 48

∆ = 1

6

-(-5) ± √16 × 1/2

(5 ± 16)/2

x' = (5 + 16)/2

x' = 21/2

x' = 10.5

x" = (5-16)/2  

x" = -11/2

x" = -55

S = (10.5,-55)

----------------------------------------

Somando o produto:

Soma das raízes = -b/a

Produto das raízes = c/a

x² - 4x + 4

-(-4)/1 = 4

4/1 = 4

Pensa em dois números que somados sejam 8 e multiplicados sejam 16. Esses números são: 4 e 4.

S = (4,4)

===========================================================

➡➡ Explicação ⬅⬅

Forma de Bhaskara:

Equação do segundo grau ➱ ax² + bx + y = 0 com a ≠ 0  

Reescrevemos ➱ ax² + bx = -y

Dividindo por algum número no caso da explicação é com a letra a.  

x² + bx/a = -y/a

Fazendo se tornar notável:

x² + 2bx/2a + b²/4a² = -y/a + b²/4a²  

(x + b/2a)² = -4ay + b²/4a²  

x + b/2a = ± √(-4ay + b²)/2a  

x = -b ± √(b² - 4ay) × 1/2a

----------------------------------------

Soma e Produto:

Equação do segundo grau ➱ ax² + bx + c = 0 com a ≠ 0

Raízes são dadas pela essa equação ➱ x = -b ± √(b² - 4ac) × 1/2a

Som as raízes para conseguirmos algum resultado para ficar perto do final da conta ➱  

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

-b + √(b² - 4ay) - b - √(b² - 4ay)/2a

 

Resposta final: -b/a

----------------------------------------

Descobrindo produto:

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

(-b + √(b² - 4ay) )(-b - √(b² - 4ay) × (1/2a)²

(-b)² - ( √(b² - 4ay) )² × 1/4a²

b² - (b² - 4ay) × 1/4a²  

b² - b² + 4ay × 1/4a²

4ay/4a²

y/a

--------------------------------------------------------------------------------

Estude mais equações:

1- brainly.com.br/tarefa/36203446

2- brainly.com.br/tarefa/36384234

Bons Estudos!!

Perguntas interessantes