como fazer equação de 2° grau
Soluções para a tarefa
1º passo: determinar o valor do discriminante ou delta (∆)
∆ = b² – 4 * a * c
∆ = (–2)² – 4 * 1 * (–3)
∆ = 4 + 12
∆ = 16
2º passo:
x = – b ± √∆
2∙a
x = –(– 2) ± √16
2∙1
x = 2 ± 4
2
x' = 2 + 4 = 6 = 3
2 2
x'' = 2 – 4 = – 2 = – 1
2 2
Os resultados são x’ = 3 e x” = –1.
Exemplo II: Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.
Os coeficientes são:
a = 1
b = 8
c = 16
∆ = b² – 4 * a * c
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0
x = – b ± √∆
2∙a
x = – 8 ± √0
2∙1
x' = x'' = –8 = – 4
2
No exemplo 2, devemos observar que o valor do discriminante é igual a zero. Nesses casos, a equação possuirá somente uma solução ou raiz única.
Exemplo III: Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.
∆ = b² – 4 * a * c
∆ = 6² – 4 * 10 * 10
∆ = 36 – 400
∆ = –364