Matemática, perguntado por jaquelinejsf, 1 ano atrás

Como calcular essa expressão usando logaritmos?
1,1^n=40
Considere log 11=1,04 1 log 2=0,3

Soluções para a tarefa

Respondido por FibonacciTH
1
Dadas as propriedades:

๏ \mathsf{\log _b\left(a\cdot c\right)=\log _b\left(a\right)+\log _b\left(c\right)}
๏ \mathsf{\log _b\left(\frac{a}{c}\right)=\log _b\left(a\right)-\log _b\left(c\right)}
๏ \mathsf{\log _b\left(a^c\right)=c\cdot \log _b\left(a\right)}
๏ \mathsf{\log _a\left(a\right)=1}

= = = = =
Adote:

๏ \mathsf{\log \left(11\right)=1,04}
๏ \mathsf{\log \left(2\right)=0,3}

= = = = =

Dada a expressão:

\mathsf{1,1^n=40}

Aplicando a propriedade logarítmica em ambos os termos:

\mathsf{\log \left(1,1^n\right)=\log \left(40\right)}\\\\\\\mathsf{n\cdot \log \left(1,1\right)=\log \left(40\right)}\\\\\\\mathsf{n\cdot \log \left(\dfrac{11}{10}\right)=\log \left(4\cdot 10\right)}\\\\\\\mathsf{n\cdot \log \left(\dfrac{11}{10}\right)=\log \left(2^2\cdot 10\right)}\\\\\\\mathsf{n\cdot \left[\log \left(11\right)-\log \left(10\right)\right]=\log \left(2^2\right)+\log \left(10\right)}\\\\\\\mathsf{n\cdot \left[\log \left(11\right)-1\right]=\left[2\cdot \:\log \left(2\right)\right]+1}\\\\\\\mathsf{n\cdot \left(1,04-1\right)=\left(2\cdot \:0,3\right)+1}\\\\\\\mathsf{n\cdot 0,04=0,6+1}\\\\\\\mathsf{n\cdot 0,04=1,6}\\\\\\\mathsf{n=\dfrac{1,6}{0,04}}\\\\\\\mathsf{n=\dfrac{160}{4}}\\\\\\\boxed{\mathsf{n=40}}\: \: \checkmark
Perguntas interessantes