com o auxilio da tabela dos arcos notáveis calcule: a) seno 120° e cosseno 120°
Soluções para a tarefa
Bom, primeiramente, o ângulo 120º está no 2º quadrante. Como eu sei? Porque num circulo trigonométrico, temos quatro quadrantes, onde: do 0 até 90º é o primeiro quadrante; do 90º ao 180º é o 2º quadrante (onde compreende o 120º); do 180º ao 270º é o terceiro; do 270º até 360º é o quarto quadrante.
Quando estamos no segundo quadrante, para descubrir seu ângulo correspondente do primeiro quadrante (que é onde está os ângulos que sabemos sen, cos e tg) basta fazer 180-x (onde x é o ângulo correspondente).
180-120 = 60º. Portanto, o sen e cos de 60º será (em valor númerico) igual ao de 120º, variando apenas o sinal.
Na definição se o cos ou sen é negativo, basta ver em que quadrante o ângulo está. No sen (eixo vertical) tudo que está acima é positivo, tudo que está abaixo é negativo; No cos (eixo horizontal) tudo que está à esquerda é negativo, tudo que está à direita é positivo.
Analisando o 120º, está no segundo quadrante. Tudo que está no segundo quadrante, o sen é positivo (parte da barra vertical que está para cima) e o cos é negativo, já que está à esquerda.
Portanto:
a) Observe que:
.
Tomando , temos:
Como e , segue que:
Logo:
b) Note que:
Façamos :
Logo:
.