Matemática, perguntado por juhsilveira, 9 meses atrás

Cálculo integral simples

Anexos:

Soluções para a tarefa

Respondido por deusirenen17
0

\frac{1}{64} \int\limits {1} \, dr + \frac{1}{64} \int\limits {cos(r)} \, drResposta:

\int\limits^} {sen(2x)^{2}.cos(2x)^4} \, dx \\\int\limits^}(1-cos(2x)^2).cos(2x)^4dx\\\\\int\limits^}cos(2x)^4 -cos(2x)^6dx\\\int\limits^}cos(2x)^4dx -\int\limits^}cos(2x)^6dx

u = 2x \\\frac{du}{dx} = 2 \\\frac{du}{2} = dx

\frac{1}{2} \int\limits^}cos(u)^4du -\frac{1}{2} \int\limits {cos(u)^6} \, dx \\\\cos(u)^2 = \frac{1+cos(2u)}{2}

\frac{1}{8} \int\limits^}1du +\frac{1}{8}  \int\limits^}cos(2u)^2du +\frac{1}{4} \int\limits^} cos(2u)du

y = 2u \\\frac{dy}{du} = 2 \\du= \frac{dy}{2}

\frac{1}{16}\int\limits^}1dy +  \frac{1}{16}\int\limits^} cos(y)^2 dy +\frac{1}{4}\int\limits^}cos(y)dy

r = 2y\\dr=\frac{dy}{2}

\frac{1}{64} \int\limits {1} \, dr   +\frac{1}{64} \int\limits cos(r)\, dr
tentei meu chapa mais foi ate ais mesmo

Perguntas interessantes