Cálculo III cálculo de integral em relação ao gráfico, questão em anexo. 20PTS
Anexos:
![](https://pt-static.z-dn.net/files/dcf/dcbcc38b07db0f4bd92d8a3d117b614d.png)
Soluções para a tarefa
Respondido por
2
Para calcular uma integral de linha de um campo vetorial, a curva deve estar orientada.
Dado que os pontos que descrevem a curva
foram dados na seguinte ordem:
![(0,\,0),\,(1,\,0)~\text{ e }~(0,\,2). (0,\,0),\,(1,\,0)~\text{ e }~(0,\,2).](https://tex.z-dn.net/?f=%280%2C%5C%2C0%29%2C%5C%2C%281%2C%5C%2C0%29%7E%5Ctext%7B+e+%7D%7E%280%2C%5C%2C2%29.)
concluímos que a curva é percorrida no sentido anti-horário. Logo,
é uma curva fechada orientada positivamente.
__________________________
Queremos calcular a integral sobre
do seguinte campo vetorial:
![\overrightarrow{\mathbf{F}}(x,\,y)=(3x^2+y)\overrightarrow{\mathbf{i}}+4y^2\overrightarrow{\mathbf{j}} \overrightarrow{\mathbf{F}}(x,\,y)=(3x^2+y)\overrightarrow{\mathbf{i}}+4y^2\overrightarrow{\mathbf{j}}](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5Cmathbf%7BF%7D%7D%28x%2C%5C%2Cy%29%3D%283x%5E2%2By%29%5Coverrightarrow%7B%5Cmathbf%7Bi%7D%7D%2B4y%5E2%5Coverrightarrow%7B%5Cmathbf%7Bj%7D%7D)
onde as componentes
e
do campo são as seguintes funções:
![\left\{ \!\begin{array}{l}P(x,\,y)=3x^2+y\\\\ Q(x,\,y)=4y^2 \end{array} \right. \left\{ \!\begin{array}{l}P(x,\,y)=3x^2+y\\\\ Q(x,\,y)=4y^2 \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B+%5C%21%5Cbegin%7Barray%7D%7Bl%7DP%28x%2C%5C%2Cy%29%3D3x%5E2%2By%5C%5C%5C%5C+Q%28x%2C%5C%2Cy%29%3D4y%5E2+%5Cend%7Barray%7D+%5Cright.)
Poderíamos parametrizar a curva
(união de três segmentos de reta) e calcular a integral sobre a curva parametrizada.
Porém, como a curva
é fechada e está orientada positivamente, podemos usar o Teorema de Green:
____________________________
O campo está definido em todos os pontos de
e as derivadas parciais das componentes
e
são contínuas no interior de ![C. C.](https://tex.z-dn.net/?f=C.)
____________________________
Pelo Teorema de Green, temos então que
![\displaystyle\oint_C\overrightarrow{\mathbf{F}}(x,\,y)\cdot d\overrightarrow{\mathbf{r}}\\\\\\ =\oint_CP(x,\,y)\,dx+Q(x,\,y)\,dy=\iint_{\mathrm{int}(C)}\left(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y} \right )d\mathbf{A}~~~~~~\mathbf{(i)} \displaystyle\oint_C\overrightarrow{\mathbf{F}}(x,\,y)\cdot d\overrightarrow{\mathbf{r}}\\\\\\ =\oint_CP(x,\,y)\,dx+Q(x,\,y)\,dy=\iint_{\mathrm{int}(C)}\left(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y} \right )d\mathbf{A}~~~~~~\mathbf{(i)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Coint_C%5Coverrightarrow%7B%5Cmathbf%7BF%7D%7D%28x%2C%5C%2Cy%29%5Ccdot+d%5Coverrightarrow%7B%5Cmathbf%7Br%7D%7D%5C%5C%5C%5C%5C%5C+%3D%5Coint_CP%28x%2C%5C%2Cy%29%5C%2Cdx%2BQ%28x%2C%5C%2Cy%29%5C%2Cdy%3D%5Ciint_%7B%5Cmathrm%7Bint%7D%28C%29%7D%5Cleft%28%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D-%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D+%5Cright+%29d%5Cmathbf%7BA%7D%7E%7E%7E%7E%7E%7E%5Cmathbf%7B%28i%29%7D)
sendo
a região do plano contida no interior da curva ![C. C.](https://tex.z-dn.net/?f=C.)
________________________
![\bullet~~\dfrac{\partial Q}{\partial x}=\dfrac{\partial}{\partial x}(4y^2)=0\\\\\\ \bullet~~\dfrac{\partial P}{\partial y}=\dfrac{\partial}{\partial y}(3x^2+y)=1 \bullet~~\dfrac{\partial Q}{\partial x}=\dfrac{\partial}{\partial x}(4y^2)=0\\\\\\ \bullet~~\dfrac{\partial P}{\partial y}=\dfrac{\partial}{\partial y}(3x^2+y)=1](https://tex.z-dn.net/?f=%5Cbullet%7E%7E%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+x%7D%284y%5E2%29%3D0%5C%5C%5C%5C%5C%5C+%5Cbullet%7E%7E%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial+y%7D%283x%5E2%2By%29%3D1)
Portanto,
![\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=0-1\\\\\\ \dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=-1 \dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=0-1\\\\\\ \dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=-1](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D-%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D%3D0-1%5C%5C%5C%5C%5C%5C+%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D-%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D%3D-1)
(opa, é uma função constante de
e
)
Substituindo em
temos
![\displaystyle\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=\iint_{\mathrm{int}(C)}(-1)\,d\mathbf{A}\\\\\\ =-1\cdot\iint_{\mathrm{int}(C)} d\mathbf{A} \displaystyle\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=\iint_{\mathrm{int}(C)}(-1)\,d\mathbf{A}\\\\\\ =-1\cdot\iint_{\mathrm{int}(C)} d\mathbf{A}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Coint_C+P%28x%2C%5C%2Cy%29%5C%2Cdx%2BQ%28x%2C%5C%2Cy%29%5C%2Cdy%3D%5Ciint_%7B%5Cmathrm%7Bint%7D%28C%29%7D%28-1%29%5C%2Cd%5Cmathbf%7BA%7D%5C%5C%5C%5C%5C%5C+%3D-1%5Ccdot%5Ciint_%7B%5Cmathrm%7Bint%7D%28C%29%7D+d%5Cmathbf%7BA%7D)
Mas a última integral acima nos fornece a área do triângulo formado pelos três pontos:
![\displaystyle\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=(-1)\cdot \mathrm{\'Area}(\triangle)\\\\\\
\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=(-1)\cdot \dfrac{1\cdot 2}{2}\\\\\\
\boxed{\begin{array}{c}
\displaystyle\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=-1
\end{array}} \displaystyle\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=(-1)\cdot \mathrm{\'Area}(\triangle)\\\\\\
\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=(-1)\cdot \dfrac{1\cdot 2}{2}\\\\\\
\boxed{\begin{array}{c}
\displaystyle\oint_C P(x,\,y)\,dx+Q(x,\,y)\,dy=-1
\end{array}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Coint_C+P%28x%2C%5C%2Cy%29%5C%2Cdx%2BQ%28x%2C%5C%2Cy%29%5C%2Cdy%3D%28-1%29%5Ccdot+%5Cmathrm%7B%5C%27Area%7D%28%5Ctriangle%29%5C%5C%5C%5C%5C%5C%0A%5Coint_C+P%28x%2C%5C%2Cy%29%5C%2Cdx%2BQ%28x%2C%5C%2Cy%29%5C%2Cdy%3D%28-1%29%5Ccdot+%5Cdfrac%7B1%5Ccdot+2%7D%7B2%7D%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%5Cdisplaystyle%5Coint_C+P%28x%2C%5C%2Cy%29%5C%2Cdx%2BQ%28x%2C%5C%2Cy%29%5C%2Cdy%3D-1%0A%5Cend%7Barray%7D%7D)
Resposta: alternativa a.
Dado que os pontos que descrevem a curva
concluímos que a curva é percorrida no sentido anti-horário. Logo,
__________________________
Queremos calcular a integral sobre
onde as componentes
Poderíamos parametrizar a curva
Porém, como a curva
____________________________
O campo está definido em todos os pontos de
____________________________
Pelo Teorema de Green, temos então que
sendo
________________________
Portanto,
(opa, é uma função constante de
Substituindo em
Mas a última integral acima nos fornece a área do triângulo formado pelos três pontos:
Resposta: alternativa a.
tiagomarangoni:
Valeu irmnão
Perguntas interessantes
Ed. Física,
1 ano atrás
História,
1 ano atrás
Sociologia,
1 ano atrás
Biologia,
1 ano atrás
Biologia,
1 ano atrás
Geografia,
1 ano atrás
Química,
1 ano atrás