Matemática, perguntado por adaildebarbosa, 1 ano atrás

calculo de integral no limite de menos infinito a dois de dx/ (4-x)²

Soluções para a tarefa

Respondido por ScreenBlack
1
Resolvendo integral por substituição:

\displaystyle \int_{-\infty}^{2}\dfrac{dx}{(4-x)^2}\\\\
\displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx\\\\\\
Resolvendo:\\\\
\displaystyle \int_{-\infty}^{2}(\underbrace{4-x})^{-2}.dx\\
\ ~~~~~~~~~~~u\\\\
u=4-x\\du=-1.dx\ \ \Rightarrow\ \ dx=-1.du


\displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx=\displaystyle \int_{-\infty}^{2}(u)^{-2}.(-1.du)\\\\\\ \displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx=\displaystyle -1\int_{-\infty}^{2} u^{-2}.du\\\\\\ \displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx= -1 \left \left(\dfrac{u^{-2+1}}{-2+1}\right) \right |_{-\infty}^{2}\\\\\\ \displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx= -1 \left \left(\dfrac{u^{-1}}{-1}\right) \right |_{-\infty}^{2}


\displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx= \left \dfrac{1}{u}\right |_{-\infty}^{2}\\\\\\
\displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx= \left \dfrac{1}{4-x}\right |_{-\infty}^{2}\\\\\\
\displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx= \dfrac{1}{4-(2)} -\dfrac{1}{4-(-\infty)}\\\\\\
\boxed{\displaystyle \int_{-\infty}^{2}(4-x)^{-2}.dx= \dfrac{1}{2}}


Espero ter ajudado.
Bons estudos!
Perguntas interessantes