Cálculo da área de um trapézio isóceles cuja base medem 4cm e 7cm e cujos lados medem 2,5cm cada um.
Soluções para a tarefa
Respondido por
1
............../l--4--l\
.....2,5 /..h......l..\ 2,5
.........../...l..4...l....\
...........1,5.........1,5
h²+1,5²=2,5²
h² +2,25 = 6,25
h² = 6,25 -2,25
h² = 4
h = 2 cm
A= (B+b). h/2
A= (7+4). 2/2
A= (11) cm² ✓
.....2,5 /..h......l..\ 2,5
.........../...l..4...l....\
...........1,5.........1,5
h²+1,5²=2,5²
h² +2,25 = 6,25
h² = 6,25 -2,25
h² = 4
h = 2 cm
A= (B+b). h/2
A= (7+4). 2/2
A= (11) cm² ✓
Respondido por
2
Para calcular a área de um trapézio, é utilizado a fórmula:
A = (BaseMaior + BaseMenor)×altura/2
Base maior (B) = 7 cm
Base menor (b) = 4 cm
Altura (h) = (???)
Temos que encontrar a altura. Para encontra a altura, sabemos que, ao lado, forma-se um triângulo retângulo que podemos utilizar o Teorema de Pitágoras. Se no meior há 4 cm e o máximo é de 7 cm, cada espaço ao lado valerá 1,5 cm, pois são iguals. E a "hipotenusa" deste triângulo retângulo será 2,5 cm.
a² = b² + h²
2,5² = 1,5² + h²
h = √(2,5² - 1,5²)
h = 2
A = (B+b)×h/2
A = (7+4)×2/2
A = 11 cm²
Bons estudos!
Perguntas interessantes
Matemática,
9 meses atrás
História,
9 meses atrás
Química,
9 meses atrás
Ed. Física,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás