(CÁLCULO 2)
Determine a área da superfície:
A parte da esfera x² + y² +z² = a² que está dentro do cilindro x² +y² = ax e acima do plano xy.
Soluções para a tarefa
Respondido por
7
encontrando os limites
![\Bmatrix{x^2+y^2+z^2=a^2\\\\x^2+y^2=ax\end \Bmatrix{x^2+y^2+z^2=a^2\\\\x^2+y^2=ax\end](https://tex.z-dn.net/?f=%5CBmatrix%7Bx%5E2%2By%5E2%2Bz%5E2%3Da%5E2%5C%5C%5C%5Cx%5E2%2By%5E2%3Dax%5Cend)
substituindo o valor de x²+y² na primeira equação e isolando z
![\boxed{\boxed{z=\pm \sqrt{a^2-ax} }} \boxed{\boxed{z=\pm \sqrt{a^2-ax} }}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bz%3D%5Cpm+%5Csqrt%7Ba%5E2-ax%7D+%7D%7D)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
as derivadas parciais
![\bmatrix{ \frac{\partial z}{\partial x}= \frac{-x}{\sqrt{a^2-x^2-y^2}} \\\\ \frac{\partial z}{\partial y}= \frac{-y}{\sqrt{a^2-x^2-y^2}} \end \bmatrix{ \frac{\partial z}{\partial x}= \frac{-x}{\sqrt{a^2-x^2-y^2}} \\\\ \frac{\partial z}{\partial y}= \frac{-y}{\sqrt{a^2-x^2-y^2}} \end](https://tex.z-dn.net/?f=%5Cbmatrix%7B+%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x%7D%3D++%5Cfrac%7B-x%7D%7B%5Csqrt%7Ba%5E2-x%5E2-y%5E2%7D%7D+%5C%5C%5C%5C+%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+y%7D%3D++%5Cfrac%7B-y%7D%7B%5Csqrt%7Ba%5E2-x%5E2-y%5E2%7D%7D+%5Cend)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
a integral que calcula a area da superficie da esfera sera
![\boxed{\boxed{A(s)=\int\int_D \left( \sqrt{1+ \left( \frac{\partial z}{\partial x \right )^2+\left( \frac{\partial z}{\partial x \right )^2} \right )}dA}}} \boxed{\boxed{A(s)=\int\int_D \left( \sqrt{1+ \left( \frac{\partial z}{\partial x \right )^2+\left( \frac{\partial z}{\partial x \right )^2} \right )}dA}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BA%28s%29%3D%5Cint%5Cint_D+%5Cleft%28+%5Csqrt%7B1%2B+%5Cleft%28+%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x+%5Cright+%29%5E2%2B%5Cleft%28+%5Cfrac%7B%5Cpartial+z%7D%7B%5Cpartial+x+%5Cright+%29%5E2%7D+%5Cright+%29%7DdA%7D%7D%7D)
.
![A(s)=\int\int_D \left( \sqrt{1+ \frac{x^2}{a^2-x^2-y^2}+ \frac{y^2}{a^2-x^2-y^2}} \right )}dA\\\\\\A(s)=\int\int_D \left( \sqrt{1+ \frac{x^2+y^2}{a^2-(x^2+y^2)}}\right)dA\\\\\\A(s)=\int\int_D \left( \sqrt{ \frac{a^2-(x^2+y^2)+x^2+y^2}{a^2-(x^2+y^2)}}\right)dA\\\\\\A(s)=\int\int_D \left( \sqrt{ \frac{a^2}{a^2-(x^2+y^2)}}\right)dA\\\\\\A(s)=\int\int_D \left( \frac{a}{\sqrt{a^2-(x^2+y^2)}}\right)dA\\\\\\\boxed{\boxed{A(s)=a*\int\int_D \left( \frac{1}{\sqrt{a^2-(x^2+y^2)}}\right)dA}} A(s)=\int\int_D \left( \sqrt{1+ \frac{x^2}{a^2-x^2-y^2}+ \frac{y^2}{a^2-x^2-y^2}} \right )}dA\\\\\\A(s)=\int\int_D \left( \sqrt{1+ \frac{x^2+y^2}{a^2-(x^2+y^2)}}\right)dA\\\\\\A(s)=\int\int_D \left( \sqrt{ \frac{a^2-(x^2+y^2)+x^2+y^2}{a^2-(x^2+y^2)}}\right)dA\\\\\\A(s)=\int\int_D \left( \sqrt{ \frac{a^2}{a^2-(x^2+y^2)}}\right)dA\\\\\\A(s)=\int\int_D \left( \frac{a}{\sqrt{a^2-(x^2+y^2)}}\right)dA\\\\\\\boxed{\boxed{A(s)=a*\int\int_D \left( \frac{1}{\sqrt{a^2-(x^2+y^2)}}\right)dA}}](https://tex.z-dn.net/?f=A%28s%29%3D%5Cint%5Cint_D+%5Cleft%28+%5Csqrt%7B1%2B+%5Cfrac%7Bx%5E2%7D%7Ba%5E2-x%5E2-y%5E2%7D%2B+%5Cfrac%7By%5E2%7D%7Ba%5E2-x%5E2-y%5E2%7D%7D+%5Cright+%29%7DdA%5C%5C%5C%5C%5C%5CA%28s%29%3D%5Cint%5Cint_D+%5Cleft%28+%5Csqrt%7B1%2B+%5Cfrac%7Bx%5E2%2By%5E2%7D%7Ba%5E2-%28x%5E2%2By%5E2%29%7D%7D%5Cright%29dA%5C%5C%5C%5C%5C%5CA%28s%29%3D%5Cint%5Cint_D+%5Cleft%28+%5Csqrt%7B+%5Cfrac%7Ba%5E2-%28x%5E2%2By%5E2%29%2Bx%5E2%2By%5E2%7D%7Ba%5E2-%28x%5E2%2By%5E2%29%7D%7D%5Cright%29dA%5C%5C%5C%5C%5C%5CA%28s%29%3D%5Cint%5Cint_D+%5Cleft%28+%5Csqrt%7B+%5Cfrac%7Ba%5E2%7D%7Ba%5E2-%28x%5E2%2By%5E2%29%7D%7D%5Cright%29dA%5C%5C%5C%5C%5C%5CA%28s%29%3D%5Cint%5Cint_D+%5Cleft%28++%5Cfrac%7Ba%7D%7B%5Csqrt%7Ba%5E2-%28x%5E2%2By%5E2%29%7D%7D%5Cright%29dA%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7BA%28s%29%3Da%2A%5Cint%5Cint_D+%5Cleft%28++%5Cfrac%7B1%7D%7B%5Csqrt%7Ba%5E2-%28x%5E2%2By%5E2%29%7D%7D%5Cright%29dA%7D%7D)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
reescrevendo em coordenadas polares
no plano xy o cilindro tem uma base circular
![x^2+y^2=ax\\\\r^2=a*r*cos(\theta)\\\\\boxed{\boxed{r=a*cos(\theta)}} x^2+y^2=ax\\\\r^2=a*r*cos(\theta)\\\\\boxed{\boxed{r=a*cos(\theta)}}](https://tex.z-dn.net/?f=x%5E2%2By%5E2%3Dax%5C%5C%5C%5Cr%5E2%3Da%2Ar%2Acos%28%5Ctheta%29%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Br%3Da%2Acos%28%5Ctheta%29%7D%7D)
queremos a área acima do plano xy
o angulo vai variar de 0 a pi
![D\Bmatrix{0 \leq r \leq a*cos(\theta)\\\\0 \leq \theta \leq \pi \end D\Bmatrix{0 \leq r \leq a*cos(\theta)\\\\0 \leq \theta \leq \pi \end](https://tex.z-dn.net/?f=D%5CBmatrix%7B0+%5Cleq+r+%5Cleq+a%2Acos%28%5Ctheta%29%5C%5C%5C%5C0+%5Cleq+%5Ctheta+%5Cleq+%5Cpi+%5Cend)
temos a integral
![\boxed{\boxed{A(s)=a* \int\limits^\pi_0 \int\limits^{a*cos(\theta)}_0 \left( \frac{r}{\sqrt{a^2-r^2} \right)} drd\theta}}} \boxed{\boxed{A(s)=a* \int\limits^\pi_0 \int\limits^{a*cos(\theta)}_0 \left( \frac{r}{\sqrt{a^2-r^2} \right)} drd\theta}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BA%28s%29%3Da%2A+%5Cint%5Climits%5E%5Cpi_0+%5Cint%5Climits%5E%7Ba%2Acos%28%5Ctheta%29%7D_0+%5Cleft%28+%5Cfrac%7Br%7D%7B%5Csqrt%7Ba%5E2-r%5E2%7D+%5Cright%29%7D+drd%5Ctheta%7D%7D%7D)
substituindo o valor de x²+y² na primeira equação e isolando z
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
as derivadas parciais
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
a integral que calcula a area da superficie da esfera sera
.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
reescrevendo em coordenadas polares
no plano xy o cilindro tem uma base circular
queremos a área acima do plano xy
o angulo vai variar de 0 a pi
temos a integral
Perguntas interessantes
Artes,
1 ano atrás
História,
1 ano atrás
Ed. Técnica,
1 ano atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás