Matemática, perguntado por Joycefer007, 10 meses atrás

calcule x e y, e determine o perímetro de cada figura​

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
4

Explicação passo-a-passo:

a)

\sf cos~60^{\circ}=\dfrac{cateto~adjacente}{hipotenusa}

\sf \dfrac{1}{2}=\dfrac{x}{26}

\sf 2x=26\cdot1

\sf 2x=26

\sf x=\dfrac{26}{2}

\sf \red{x=13~cm}

\sf sen~60^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf \dfrac{\sqrt{3}}{2}=\dfrac{y}{26}

\sf 2y=26\sqrt{3}

\sf y=\dfrac{26\sqrt{3}}{2}

\sf \red{y=13\sqrt{3}~cm}

b)

\sf tg~30^{\circ}=\dfrac{cateto~oposto}{cateto~adjacente}

\sf \dfrac{\sqrt{3}}{3}=\dfrac{16}{x}

\sf x\sqrt{3}=3\cdot16

\sf x\sqrt{3}=48

\sf x=\dfrac{48}{\sqrt{3}}

\sf x=\dfrac{48}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}

\sf x=\dfrac{48\sqrt{3}}{3}

\sf \red{x=16\sqrt{3}~cm}

\sf sen~30^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf \dfrac{1}{2}=\dfrac{16}{y}

\sf y\cdot1=16\cdot2

\sf \red{y=32~cm}

c)

\sf sen~45^{\circ}=\dfrac{cateto~oposto}{hipotenusa}

\sf \dfrac{\sqrt{2}}{2}=\dfrac{x}{22}

\sf 2x=22\sqrt{2}

\sf x=\dfrac{22\sqrt{2}}{2}

\sf \red{x=11\sqrt{2}~cm}

\sf cos~45^{\circ}=\dfrac{cateto~adjacente}{hipotenusa}

\sf \dfrac{\sqrt{2}}{2}=\dfrac{y}{22}

\sf 2y=22\sqrt{2}

\sf y=\dfrac{22\sqrt{2}}{2}

\sf \red{y=11\sqrt{2}~cm}

Perguntas interessantes