Matemática, perguntado por mullernato, 1 ano atrás

Calcule:
\frac{90\sqrt{5}-30 \sqrt{5}}{240+120 \sqrt{3} }

Soluções para a tarefa

Respondido por Maurício83
0
(90√5) - (30√5) = 30[(3√5) - √5)] = 30(2√5)

240 + 120√3 = 120(2 + √3)

 \frac{30(2 \sqrt{5} )}{120(2+ \sqrt{3} )} =  \frac{2 \sqrt{5} }{4(2+ \sqrt{3} )}

mullernato: e para tirar a raiz do denominador?
Respondido por Lukyo
1
\dfrac{90\sqrt{5}-30\sqrt{5}}{240+120\sqrt{3}}\\\\\\
=\dfrac{(90-30)\sqrt{5}}{240+120\sqrt{3}}\\\\\\
=\dfrac{60\sqrt{5}}{120\cdot \big(2+\sqrt{3}\big)}\\\\\\
=\dfrac{\diagup\!\!\!\!\! 60\sqrt{5}}{\diagup\!\!\!\!\! 60\cdot 2\cdot \big(2+\sqrt{3}\big)}\\\\\\
=\dfrac{\sqrt{5}}{2\cdot \big(2+\sqrt{3}\big)}


Multiplicando e dividindo pelo conjugado \big(2-\sqrt{3}\big):

=\dfrac{\sqrt{5}}{2\cdot \big(2+\sqrt{3}\big)}\cdot \dfrac{2-\sqrt{3}}{2-\sqrt{3}}\\\\\\
=\dfrac{\sqrt{5}\,\big(2-\sqrt{3}\big)}{2\cdot \big(2+\sqrt{3}\big)\big(2-\sqrt{3}\big)}

=\dfrac{\sqrt{5}\,\big(2-\sqrt{3}\big)}{2\cdot \big(2^2-(\sqrt{3})^2\big)}\\\\\\
=\dfrac{\sqrt{5}\,\big(2-\sqrt{3}\big)}{2\cdot (4-3)}\\\\\\
=\dfrac{\sqrt{5}\,\big(2-\sqrt{3}\big)}{2\cdot 1}\\\\\\
=\boxed{\begin{array}{c}\dfrac{\sqrt{5}\,\big(2-\sqrt{3}\big)}{2} \end{array}}


Bons estudos! :-)

Perguntas interessantes