Calcule para quais valores de a os pontos A(–1, a), B(0, a + 3) e C(a + 10, a + 6) são vértice de um triangulo
ittalo25:
triângulo retângulo ?
Soluções para a tarefa
Respondido por
9
A(–1, a), B(0, a + 3) e C(a + 10, a + 6)
![\left[\begin{array}{ccccc}-1&a&1&-1&a\\0&(a+3)&1&0&(a+3)\\(a+10)&(a+6)&1&(a+10)&(a+6)\end{array}\right] \neq 0 \left[\begin{array}{ccccc}-1&a&1&-1&a\\0&(a+3)&1&0&(a+3)\\(a+10)&(a+6)&1&(a+10)&(a+6)\end{array}\right] \neq 0](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D-1%26amp%3Ba%26amp%3B1%26amp%3B-1%26amp%3Ba%5C%5C0%26amp%3B%28a%2B3%29%26amp%3B1%26amp%3B0%26amp%3B%28a%2B3%29%5C%5C%28a%2B10%29%26amp%3B%28a%2B6%29%26amp%3B1%26amp%3B%28a%2B10%29%26amp%3B%28a%2B6%29%5Cend%7Barray%7D%5Cright%5D++%5Cneq+0)
![-1.(a+3) + a.(a+10) + 0 - ((a+10).(a+3)+(-1).(a+6)+0) \neq 0
-a -3 + a^2 + 10a - (a^2 + 3a + 10a +30 -a -6) \neq 0
-a -3 + a^2 + 10a -a^2 -3a -10a -30 + a + 6 \neq 0
-3 -3a -30 + 6 \neq 0
-33 -3a + 6 \neq 0
-27 -3a \neq 0
3a \neq -27
a \neq -27/3
a \neq -9 -1.(a+3) + a.(a+10) + 0 - ((a+10).(a+3)+(-1).(a+6)+0) \neq 0
-a -3 + a^2 + 10a - (a^2 + 3a + 10a +30 -a -6) \neq 0
-a -3 + a^2 + 10a -a^2 -3a -10a -30 + a + 6 \neq 0
-3 -3a -30 + 6 \neq 0
-33 -3a + 6 \neq 0
-27 -3a \neq 0
3a \neq -27
a \neq -27/3
a \neq -9](https://tex.z-dn.net/?f=-1.%28a%2B3%29+%2B+a.%28a%2B10%29+%2B+0+-+%28%28a%2B10%29.%28a%2B3%29%2B%28-1%29.%28a%2B6%29%2B0%29++%5Cneq+++0%0A%0A-a+-3+%2B+a%5E2+%2B+10a+-+%28a%5E2+%2B+3a+%2B+10a+%2B30+-a+-6%29++%5Cneq++0%0A%0A-a+-3+%2B+a%5E2+%2B+10a+-a%5E2+-3a+-10a+-30+%2B+a+%2B+6++%5Cneq++0%0A%0A-3+-3a+-30+%2B+6++%5Cneq+0%0A%0A-33+-3a+%2B+6+%5Cneq+++0%0A%0A-27+-3a++%5Cneq+0%0A%0A3a++%5Cneq++-27%0A%0Aa+%5Cneq+-27%2F3%0A%0Aa+%5Cneq+-9)
(Para todos os valores de a diferentes -9 os pontos são um triângulo, eu tava fazendo isso antes de você falar que era um triângulo retângulo shuahsua)
(dAC)² + (dAB)² = (dBC)²
![\sqrt{((a+10)+1)^2 + ((a+6)-a)^2} + \sqrt{(-1-0)^2 + (a-(a+3))^2} =
\sqrt{((a+10)-0)^2+((a+6)-(a+3))^2 \sqrt{((a+10)+1)^2 + ((a+6)-a)^2} + \sqrt{(-1-0)^2 + (a-(a+3))^2} =
\sqrt{((a+10)-0)^2+((a+6)-(a+3))^2](https://tex.z-dn.net/?f=+%5Csqrt%7B%28%28a%2B10%29%2B1%29%5E2+%2B+%28%28a%2B6%29-a%29%5E2%7D+%2B++%5Csqrt%7B%28-1-0%29%5E2+%2B+%28a-%28a%2B3%29%29%5E2%7D+%3D+++%0A%0A%0A%5Csqrt%7B%28%28a%2B10%29-0%29%5E2%2B%28%28a%2B6%29-%28a%2B3%29%29%5E2+++)
![\sqrt{a^2+20a+100+2a+20+1+a^2+12a+36-2a^2+12a+a^2} +
\sqrt{1 + a^2 - 2a^2 -6a + a^2 + 6a + 9}=
\sqrt{a^2+20a+100+a^2+12a+36-2a^2-18a 36+a^2+6a+9}
\sqrt{a^2+20a+100+2a+20+1+a^2+12a+36-2a^2+12a+a^2} +
\sqrt{1 + a^2 - 2a^2 -6a + a^2 + 6a + 9}=
\sqrt{a^2+20a+100+a^2+12a+36-2a^2-18a 36+a^2+6a+9}](https://tex.z-dn.net/?f=%0A%0A%0A%0A%0A%0A%0A%0A%0A+%5Csqrt%7Ba%5E2%2B20a%2B100%2B2a%2B20%2B1%2Ba%5E2%2B12a%2B36-2a%5E2%2B12a%2Ba%5E2%7D+++++++++%2B++%0A%0A%0A%5Csqrt%7B1+%2B+a%5E2+-+2a%5E2+-6a+%2B+a%5E2+%2B+6a+%2B+9%7D%3D%0A%0A%5Csqrt%7Ba%5E2%2B20a%2B100%2Ba%5E2%2B12a%2B36-2a%5E2-18a+36%2Ba%5E2%2B6a%2B9%7D+)
![\sqrt{a^2+46a+157} +
\sqrt{10}= \sqrt{a^2+20a+109}
\sqrt{a^2+46a+157} +
\sqrt{10}= \sqrt{a^2+20a+109}](https://tex.z-dn.net/?f=%0A%0A%0A%0A%0A%0A%0A%0A%0A+%5Csqrt%7Ba%5E2%2B46a%2B157%7D+++++++++%2B++%0A%5Csqrt%7B10%7D%3D+%5Csqrt%7Ba%5E2%2B20a%2B109%7D+)
![a^2+46a+157 + 10= a^2+20a+109
46a + 157 +10 = 20a + 109
46a + 167 = 20a + 109
46a = 20a + 109 - 167
46a = 20a -58
46a - 20a = -58
26a = -58
a = -58/26
a = - 29/13
a^2+46a+157 + 10= a^2+20a+109
46a + 157 +10 = 20a + 109
46a + 167 = 20a + 109
46a = 20a + 109 - 167
46a = 20a -58
46a - 20a = -58
26a = -58
a = -58/26
a = - 29/13](https://tex.z-dn.net/?f=%0A%0A%0A%0A%0A%0A%0A%0A%0A+a%5E2%2B46a%2B157+++++++++%2B++10%3D+a%5E2%2B20a%2B109%0A%0A46a+%2B+157+%2B10+%3D+20a+%2B+109%0A%0A46a+%2B+167+%3D+20a+%2B+109%0A%0A46a+%3D+20a+%2B+109+-+167%0A%0A46a+%3D+20a+-58%0A%0A46a+-+20a+%3D+-58%0A%0A26a+%3D+-58%0A%0Aa+%3D+-58%2F26%0A%0Aa+%3D+-+29%2F13)
(Para todos os valores de a diferentes -9 os pontos são um triângulo, eu tava fazendo isso antes de você falar que era um triângulo retângulo shuahsua)
(dAC)² + (dAB)² = (dBC)²
Perguntas interessantes