Calcule os limites, caso existam:
Anexos:
![](https://pt-static.z-dn.net/files/d79/212761e1ad42f904886d42a5ada8ca5c.png)
Soluções para a tarefa
Respondido por
10
a)
![lim_{x\to 5}~(2x^2-3x+4) lim_{x\to 5}~(2x^2-3x+4)](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+5%7D%7E%282x%5E2-3x%2B4%29)
substituindo a tendência
![lim_{x\to 5}~(2.(5)^2-3.(5)+4)=\boxed{\boxed{39}} lim_{x\to 5}~(2.(5)^2-3.(5)+4)=\boxed{\boxed{39}}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+5%7D%7E%282.%285%29%5E2-3.%285%29%2B4%29%3D%5Cboxed%7B%5Cboxed%7B39%7D%7D)
b)
![lim_{x\to -2}~(\frac{x^3+2x^2-1}{5-3x}) lim_{x\to -2}~(\frac{x^3+2x^2-1}{5-3x})](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+-2%7D%7E%28%5Cfrac%7Bx%5E3%2B2x%5E2-1%7D%7B5-3x%7D%29)
substituindo a tendência
![lim_{x\to -2}~(\frac{(-2)^3+2.(-2)^2-1}{5-3.(-2)}) lim_{x\to -2}~(\frac{(-2)^3+2.(-2)^2-1}{5-3.(-2)})](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+-2%7D%7E%28%5Cfrac%7B%28-2%29%5E3%2B2.%28-2%29%5E2-1%7D%7B5-3.%28-2%29%7D%29)
![lim_{x\to -2}~(\frac{-8+8-1}{5+6})=\boxed{\boxed{-\frac{1}{11}}} lim_{x\to -2}~(\frac{-8+8-1}{5+6})=\boxed{\boxed{-\frac{1}{11}}}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+-2%7D%7E%28%5Cfrac%7B-8%2B8-1%7D%7B5%2B6%7D%29%3D%5Cboxed%7B%5Cboxed%7B-%5Cfrac%7B1%7D%7B11%7D%7D%7D)
c)
![lim_{x\to 1}~\frac{x^2-1}{x-1} lim_{x\to 1}~\frac{x^2-1}{x-1}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+1%7D%7E%5Cfrac%7Bx%5E2-1%7D%7Bx-1%7D)
abrindo o quadrado
![lim_{x\to 1}~\frac{(x-1)(x+1)}{x-1} lim_{x\to 1}~\frac{(x-1)(x+1)}{x-1}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+1%7D%7E%5Cfrac%7B%28x-1%29%28x%2B1%29%7D%7Bx-1%7D)
simplificando
![lim_{x\to 1}~x+1 lim_{x\to 1}~x+1](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+1%7D%7Ex%2B1)
substituindo a tendência
![lim_{x\to 1}~x+1=\boxed{\boxed{2}} lim_{x\to 1}~x+1=\boxed{\boxed{2}}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+1%7D%7Ex%2B1%3D%5Cboxed%7B%5Cboxed%7B2%7D%7D)
d)
![lim_{h\to 0}~(\frac{(3+h)^2-9}{h}) lim_{h\to 0}~(\frac{(3+h)^2-9}{h})](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E%28%5Cfrac%7B%283%2Bh%29%5E2-9%7D%7Bh%7D%29)
substituindo a tendência temos![\frac{0}{0} \frac{0}{0}](https://tex.z-dn.net/?f=%5Cfrac%7B0%7D%7B0%7D)
![lim_{h\to 0}~(\frac{9+6h+h^2-9}{h}) lim_{h\to 0}~(\frac{9+6h+h^2-9}{h})](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E%28%5Cfrac%7B9%2B6h%2Bh%5E2-9%7D%7Bh%7D%29)
![lim_{h\to 0}~(\frac{6h+h^2}{h}) lim_{h\to 0}~(\frac{6h+h^2}{h})](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E%28%5Cfrac%7B6h%2Bh%5E2%7D%7Bh%7D%29)
tirando em evidência h
![lim_{h\to 0}~(\frac{6h+h^2}{h}) lim_{h\to 0}~(\frac{6h+h^2}{h})](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E%28%5Cfrac%7B6h%2Bh%5E2%7D%7Bh%7D%29)
![lim_{h\to 0}~(\frac{h(6+h)}{h}) lim_{h\to 0}~(\frac{h(6+h)}{h})](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E%28%5Cfrac%7Bh%286%2Bh%29%7D%7Bh%7D%29)
![lim_{h\to 0}~6+h lim_{h\to 0}~6+h](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E6%2Bh)
substituindo a tendência
![lim_{h\to 0}~6+h=\boxed{\boxed{6}} lim_{h\to 0}~6+h=\boxed{\boxed{6}}](https://tex.z-dn.net/?f=lim_%7Bh%5Cto+0%7D%7E6%2Bh%3D%5Cboxed%7B%5Cboxed%7B6%7D%7D)
e)
![lim_{t\to 0}~\frac{\sqrt{t^2+9}-3}{t^2} lim_{t\to 0}~\frac{\sqrt{t^2+9}-3}{t^2}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7B%5Csqrt%7Bt%5E2%2B9%7D-3%7D%7Bt%5E2%7D)
se substituir a tendência vamos ter![\frac{0}{0} \frac{0}{0}](https://tex.z-dn.net/?f=%5Cfrac%7B0%7D%7B0%7D)
![lim_{t\to 0}~\frac{\sqrt{t^2+9}-3}{t^2}.\frac{\sqrt{t^2+9}+3}{\sqrt{t^2+9}+3} lim_{t\to 0}~\frac{\sqrt{t^2+9}-3}{t^2}.\frac{\sqrt{t^2+9}+3}{\sqrt{t^2+9}+3}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7B%5Csqrt%7Bt%5E2%2B9%7D-3%7D%7Bt%5E2%7D.%5Cfrac%7B%5Csqrt%7Bt%5E2%2B9%7D%2B3%7D%7B%5Csqrt%7Bt%5E2%2B9%7D%2B3%7D)
![lim_{t\to 0}~\frac{(\sqrt{t^2+9})^2-3^2}{t^2.(\sqrt{t^2+9}+3)} lim_{t\to 0}~\frac{(\sqrt{t^2+9})^2-3^2}{t^2.(\sqrt{t^2+9}+3)}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7B%28%5Csqrt%7Bt%5E2%2B9%7D%29%5E2-3%5E2%7D%7Bt%5E2.%28%5Csqrt%7Bt%5E2%2B9%7D%2B3%29%7D)
![lim_{t\to 0}~\frac{t^2+9-9}{t^2.(\sqrt{t^2+9}+3)} lim_{t\to 0}~\frac{t^2+9-9}{t^2.(\sqrt{t^2+9}+3)}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7Bt%5E2%2B9-9%7D%7Bt%5E2.%28%5Csqrt%7Bt%5E2%2B9%7D%2B3%29%7D)
![lim_{t\to 0}~\frac{t^2}{t^2.(\sqrt{t^2+9}+3)} lim_{t\to 0}~\frac{t^2}{t^2.(\sqrt{t^2+9}+3)}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7Bt%5E2%7D%7Bt%5E2.%28%5Csqrt%7Bt%5E2%2B9%7D%2B3%29%7D)
![lim_{t\to 0}~\frac{1}{(\sqrt{t^2+9}+3)} lim_{t\to 0}~\frac{1}{(\sqrt{t^2+9}+3)}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7B1%7D%7B%28%5Csqrt%7Bt%5E2%2B9%7D%2B3%29%7D)
substituindo a tendência
![lim_{t\to 0}~\frac{1}{(\sqrt{t^2+9}+3)}=\boxed{\boxed{\frac{1}{6}}} lim_{t\to 0}~\frac{1}{(\sqrt{t^2+9}+3)}=\boxed{\boxed{\frac{1}{6}}}](https://tex.z-dn.net/?f=lim_%7Bt%5Cto+0%7D%7E%5Cfrac%7B1%7D%7B%28%5Csqrt%7Bt%5E2%2B9%7D%2B3%29%7D%3D%5Cboxed%7B%5Cboxed%7B%5Cfrac%7B1%7D%7B6%7D%7D%7D)
f)
![lim_{x\to\infty}\frac{3x^2-x-2}{5x^2+4x+1} lim_{x\to\infty}\frac{3x^2-x-2}{5x^2+4x+1}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B3x%5E2-x-2%7D%7B5x%5E2%2B4x%2B1%7D)
se substituir a tendência temos![\frac{\infty}{\infty} \frac{\infty}{\infty}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cinfty%7D%7B%5Cinfty%7D)
agora vamos ter que tirar em evidência![x^2 x^2](https://tex.z-dn.net/?f=x%5E2)
![lim_{x\to\infty}\frac{x^2(3-\frac{1}{x}-\frac{2}{x^2})}{x^2(5+\frac{4}{x}+\frac{1}{x^2})} lim_{x\to\infty}\frac{x^2(3-\frac{1}{x}-\frac{2}{x^2})}{x^2(5+\frac{4}{x}+\frac{1}{x^2})}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7Bx%5E2%283-%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B2%7D%7Bx%5E2%7D%29%7D%7Bx%5E2%285%2B%5Cfrac%7B4%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%29%7D)
agora simplifica o![x^2 x^2](https://tex.z-dn.net/?f=x%5E2)
![lim_{x\to\infty}\frac{(3-\frac{1}{x}-\frac{2}{x^2})}{(5+\frac{4}{x}+\frac{1}{x^2})} lim_{x\to\infty}\frac{(3-\frac{1}{x}-\frac{2}{x^2})}{(5+\frac{4}{x}+\frac{1}{x^2})}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%283-%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B2%7D%7Bx%5E2%7D%29%7D%7B%285%2B%5Cfrac%7B4%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7Bx%5E2%7D%29%7D)
substituindo a tendência...
![lim_{x\to\infty}\frac{(3-\frac{1}{\infty}-\frac{2}{\infty})}{(5+\frac{4}{\infty}+\frac{1}{\infty})} lim_{x\to\infty}\frac{(3-\frac{1}{\infty}-\frac{2}{\infty})}{(5+\frac{4}{\infty}+\frac{1}{\infty})}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%283-%5Cfrac%7B1%7D%7B%5Cinfty%7D-%5Cfrac%7B2%7D%7B%5Cinfty%7D%29%7D%7B%285%2B%5Cfrac%7B4%7D%7B%5Cinfty%7D%2B%5Cfrac%7B1%7D%7B%5Cinfty%7D%29%7D)
todos os números divido por infinito, é 0
![lim_{x\to\infty}\frac{(3)}{(5)}=\boxed{\boxed{\frac{3}{5}}} lim_{x\to\infty}\frac{(3)}{(5)}=\boxed{\boxed{\frac{3}{5}}}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%283%29%7D%7B%285%29%7D%3D%5Cboxed%7B%5Cboxed%7B%5Cfrac%7B3%7D%7B5%7D%7D%7D)
f)
![lim_{x\to x}~\frac{sin(3x)}{2x} lim_{x\to x}~\frac{sin(3x)}{2x}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+x%7D%7E%5Cfrac%7Bsin%283x%29%7D%7B2x%7D)
se substituir a tendência temos![\frac{0}{0} \frac{0}{0}](https://tex.z-dn.net/?f=%5Cfrac%7B0%7D%7B0%7D)
agora temos que multiplicar e dividir por 3...
![lim_{x\to x}~\frac{sin(3x)}{2x}.\frac{3}{3} lim_{x\to x}~\frac{sin(3x)}{2x}.\frac{3}{3}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+x%7D%7E%5Cfrac%7Bsin%283x%29%7D%7B2x%7D.%5Cfrac%7B3%7D%7B3%7D)
![lim_{x\to x}~\frac{sin(3x).3}{2.3x}. lim_{x\to x}~\frac{sin(3x).3}{2.3x}.](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+x%7D%7E%5Cfrac%7Bsin%283x%29.3%7D%7B2.3x%7D.)
![\frac{sin(3x)}{3x}=1 \frac{sin(3x)}{3x}=1](https://tex.z-dn.net/?f=%5Cfrac%7Bsin%283x%29%7D%7B3x%7D%3D1)
![lim_{x\to x}~\frac{sin(3x).3}{2.3x}. lim_{x\to x}~\frac{sin(3x).3}{2.3x}.](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+x%7D%7E%5Cfrac%7Bsin%283x%29.3%7D%7B2.3x%7D.)
![lim_{x\to x}~\frac{3}{2}=\boxed{\boxed{\frac{3}{2}}} lim_{x\to x}~\frac{3}{2}=\boxed{\boxed{\frac{3}{2}}}](https://tex.z-dn.net/?f=lim_%7Bx%5Cto+x%7D%7E%5Cfrac%7B3%7D%7B2%7D%3D%5Cboxed%7B%5Cboxed%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Espero que tenha te ajudado
substituindo a tendência
b)
substituindo a tendência
c)
abrindo o quadrado
simplificando
substituindo a tendência
d)
substituindo a tendência temos
tirando em evidência h
substituindo a tendência
e)
se substituir a tendência vamos ter
substituindo a tendência
f)
se substituir a tendência temos
agora vamos ter que tirar em evidência
agora simplifica o
substituindo a tendência...
todos os números divido por infinito, é 0
f)
se substituir a tendência temos
agora temos que multiplicar e dividir por 3...
Espero que tenha te ajudado
Perguntas interessantes
Espanhol,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás