Matemática, perguntado por maraportocarrero1980, 5 meses atrás

calcule o x
por favor me ajudem é para amanhã ​

Anexos:

Soluções para a tarefa

Respondido por pingu505
1

Resposta:

Questão 1 ---> 7√3/2

Questão 2 ---> 8

Explicação passo-a-passo:

Dados:

cateto oposto = 7

hipotenusa = x

ângulo = 30°

cosseno de 30° = √3/2 ---> cateto oposto/hipotenusa

 \frac{ \sqrt{3} }{2}  =  \frac{x}{7}

2x =  \sqrt{3}  \times 7 \\ x = 7 \sqrt{3}  \div 2 \\

A resposta vai ficar na forma de fração, porque 7 ÷ 2 o resultado vai estar quebrado.

x =  \frac{7 \sqrt{3} }{2}

____________________________

Dados:

cateto oposto = x

cateto adjacente = 8

ângulo = 45°

tangente de 45° = 1 ---> cateto oposto/cateto adjacente

1 =  \frac{x}{8}  \\ x = 8 \div 1 \\ x = 8

espero ter ajudado ;)

Respondido por Gustavoowwww
1

Resposta:

a) x = 14

b) x = 8

Explicação passo-a-passo:

Primeiro vamos lembrar de algumas coisas:

sen \: a =  \frac{cateto \: oposto}{hipotenusa}

cos \: a =  \frac{cateto \: adjacente}{hipotenusa}

tg \: a =  \frac{cateto \: oposto}{cateto \: adjacente}

Onde:

a = ângulo;

hipotenusa = linha contrária ao ângulo de 90°;

cateto oposto = linha oposta ao ângulo que é diferente de 90°;

cateto adjacente = linha ao lado do ângulo diferente de 90°

Na primeira podemos usar o seno de 30°. Já existe uma relação que diz que o seno de 30° equivale a  \frac{1}{2} . Então podemos fazer uma conta da seguinte forma:

a)

 seno \: 30° =  \frac{1}{2}

 \frac{1}{2}  =  \frac{cateto \: oposto}{hipotenusa}

 \frac{1}{2}  =  \frac{7}{x}

x = 7 \times 2

x = 14

Na segunda questão, podemos fazer a tangente de 45°. Também já existe uma relação que diz que tangente de 45° é 1. Então podemos fazer assim:

b)

tangente \: 45° = 1

1 =  \frac{cateto \: oposto}{cateto \: adjacente}

1 =  \frac{8}{x}

x = 8

Perguntas interessantes