Matemática, perguntado por thalessmecads, 1 ano atrás

calcule o vigésimo termo da p.a (-6,-2,2,...)

Soluções para a tarefa

Respondido por LucasStorck
1
Boa tarde!

Termo Geral da PA:

An = a₁ + (n -1).r

Onde:
An → Enésimo termo = ?
a₁ → Primeiro termo = -6
n → Número de termos = 20
r → Razão = 4 ( a₂ -a₁)

Aplicando:

A₂₀ = -6 +(20 -1).4
A₂₀ = -6 +19.4
A₂₀ = -6 +76
A₂₀ = 70

Portanto o vigésimo termo dessa P.A é o número 70.

Bons estudos!
Respondido por viniciusszillo
0

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (-6, -2, 2,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:-6

c)vigésimo termo (a₂₀): ?

d)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)

e)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, particularmente à sua direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒  

r = -2 - (-6) ⇒

r = -2 + 6 ⇒

r = 4   (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

a₂₀ = -6 + (20 - 1) . (4) ⇒

a₂₀ = -6 + (19) . (4) ⇒         (Veja a Observação 2.)

a₂₀ = -6 + 76 ⇒

a₂₀ = 70

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O vigésimo termo da P.A.(-6, -2, 2,...) é 70.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₂₀ = 70 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

70 = a₁ + (20 - 1) . (4) ⇒

70 = a₁ + (19) . (4) ⇒

70 = a₁ + 76 ⇒    (Passa-se 76 ao 1º membro e altera-se o sinal.)

70 - 76 = a₁ ⇒  

-6 = a₁ ⇔               (O símbolo ⇔ significa "equivale a".)

a₁ = -6                    (Provado que a₂₀ = 70.)

→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/19604890

https://brainly.com.br/tarefa/11010209

https://brainly.com.br/tarefa/936228

https://brainly.com.br/tarefa/5000232

https://brainly.com.br/tarefa/12348569

https://brainly.com.br/tarefa/3928952

brainly.com.br/tarefa/25959088

brainly.com.br/tarefa/2835263

brainly.com.br/tarefa/2603139

brainly.com.br/tarefa/8896775

Perguntas interessantes