Matemática, perguntado por luffykmr, 10 meses atrás

Calcule o quinto e o oitavo termo da P.G (2, 6, 18, ...).

Soluções para a tarefa

Respondido por ewerton197775p7gwlb
27

resolução!

q = a2 / a1

q = 6 / 2

q = 3

a5 = a1 * q^4

a5 = 2 * 3^4

a5 = 2 * 81

a5 = 162

a8 = a5 * q^3

a8 = 162 * 3^3

a8 = 162 * 27

a8 = 4374

Respondido por steniohmsilva
6

O quinto termo da PG(2,6,18,...) é 162 e o oitavo termo da mesma PG é 4374.

Progressão Geométrica

A Progressão Geométrica, conhecida como PG, é uma sequência numérica com razão fixa que, após o primeiro termo, todos os demais são calculados pela razão vezes o seu antecessor.

A razão de uma PG é dada pela letra q e pode ser definida através da divisão de um termo pelo seu antecessor.

Sendo assim, dada a PG (2,6,18,...), a razão q é dada dividindo a2 por a1, sendo a2 o segundo termo e a1 o primeiro.

  • q = a2/a1 = 6/2 = 3

Determinando que a q = 3, então podemos agora encontrar o quinto e o oitavo elemento, aplicando a fórmula de termos de uma PG. A fórmula é dada por:

  • an = a1 . qⁿ⁻¹

Onde n é o termo que deseja encontrar e a1 o primeiro termo.

  • Encontrando quinto termo

Para encontrar o quinto termo basta substituir n por 5, a1 por 2 e o q por 3.

a5 = 2 . 3⁵⁻¹

a5 = 2. 3⁴

a5 = 2. 81

a5 = 162

  • Encontrando oitavo termo

Realizamos o mesmo procedimento, dessa vez substituindo n por 8.

a8 = 2.3⁸⁻¹

a8 = 2.3⁷

a8 = 2.2187

a8 = 4374

Mais exercícios sobre PG em:

https://brainly.com.br/tarefa/112743

https://brainly.com.br/tarefa/4122691

#SPJ2

Anexos:
Perguntas interessantes