Matemática, perguntado por juliamaria12345, 9 meses atrás

Calcule o módulo e argumento dos seguintes complexos:
a) 2 + 2i
b) 1 – i
c) 3i
d) – 4 – 4i

Soluções para a tarefa

Respondido por Usuário anônimo
0

Explicação passo-a-passo:

a) z = 2 + 2i

|z|=\sqrt{2^2+2^2}

|z|=\sqrt{4+4}

|z|=\sqrt{8}

|z|=2\sqrt{2}

\text{sen}~\theta=\dfrac{2}{2\sqrt{2}}~\longrightarrow~\text{sen}~\theta=\dfrac{\sqrt{2}}{2}

\text{cos}~\theta=\dfrac{2}{2\sqrt{2}}~\longrightarrow~\text{cos}~\theta=\dfrac{\sqrt{2}}{2}

\text{arg}(z)=\dfrac{\pi}{4}~\text{rad}

b) z = 1 - i

|z|=\sqrt{1^2+(-1)^2}

|z|=\sqrt{1+1}

|z|=\sqrt{2}

\text{sen}~\theta=\dfrac{-1}{\sqrt{2}}~\longrightarrow~\text{sen}~\theta=\dfrac{-\sqrt{2}}{2}

\text{cos}~\theta=\dfrac{1}{\sqrt{2}}~\longrightarrow~\text{cos}~\theta=\dfrac{\sqrt{2}}{2}

\text{arg}(z)=\dfrac{7\pi}{4}~\text{rad}

c) z = 3i

|z|=\sqrt{0^2+3^2}

|z|=\sqrt{0+9}

|z|=\sqrt{9}

|z|=3

\text{sen}~\theta=\dfrac{3}{3}~\longrightarrow~\text{sen}~\theta=1

\text{cos}~\theta=\dfrac{0}{3}~\longrightarrow~\text{cos}~\theta=0

\text{arg}(z)=\dfrac{\pi}{2}~\text{rad}

d) z = -4 - 4i

|z|=\sqrt{(-4)^2+(-4)^2}

|z|=\sqrt{16+16}

|z|=\sqrt{32}

|z|=4\sqrt{2}

\text{sen}~\theta=\dfrac{-4}{4\sqrt{2}}~\longrightarrow~\text{sen}~\theta=\dfrac{-\sqrt{2}}{2}

\text{cos}~\theta=\dfrac{-4}{4\sqrt{2}}~\longrightarrow~\text{cos}~\theta=\dfrac{-\sqrt{2}}{2}

\text{arg}(z)=\dfrac{5\pi}{4}~\text{rad}

Perguntas interessantes