Matemática, perguntado por AndrewJesus, 1 ano atrás

Calcule o determinante das matrizes

Anexos:

Soluções para a tarefa

Respondido por avengercrawl
3
Olá




Por sarrus

A)



\mathsf{ A=\left[\begin{array}{ccc}2&-1&4\\3&0&-2\\5&2&-1\end{array}\right] }\\\\\\\\\mathsf{A=\left|\begin{array}{cccc}
2 ~ ~~~~ ~~ & -1~ ~~~~ ~~  & 4~ ~~~~ ~ & 2 ~~ ~~-1\\
3~ ~~~~ ~~  & 0~ ~~~~ ~~  & -2~ ~~~~ ~~  & 3~ ~~~~ ~~ 0	\\
5 ~ ~~~~ ~~ & 2~ ~~~~ ~~  & -1 ~ ~~~~ ~~ & 5	~ ~~~~ ~~2
\end{array}\right|}\\\\\\\\


\mathsf{\mathsf{\underbrace{(\mathsf{2\cdot0\cdot(-1)~+~(-1)\cdot(-2)\cdpt 5~+~4\cdot3\cdot2})}_{diag.~principal}}}\\\\\\\underbrace{(\mathsf{-1\cdot3\cdot(-1~)~+~2\cdot(-2)\cdot 2~+~4\cdot0\cdot5})}_{\mathsf{diag.~secund\'aria}}}}}\\\\\\\\\mathsf{=(0+10+24)~-~(3-8+0)}\\\\\\\mathsf{=34+5}\\\\\\\boxed{\mathsf{=39}}




B)


\displaystyle \mathsf{B=  \left|\begin{array}{ccc} \frac{1}{2} &5\\\\-2&-8\\\end{array}\right| }\\\\\\\\\mathsf{=\underbrace{\left(\mathsf{ \frac{1}{2} \cdot(-8)}\right)}_{diag.~principal}~-\underbrace{(\mathsf{5\cdot(-2)})}_{diag.~secund\'aria}}\\\\\\\mathsf{=-4~-~(-10)}\\\\\\\boxed{\mathsf{=6}}

AndrewJesus: obrigado essa é A é B juntas ?
avengercrawl: Sim, perceba que coloquei em negrito... A) e B)
AndrewJesus: muito obrigado
Perguntas interessantes