Calcule o baricentro do tiangulo de vertices A( -2,4) , B(-5,1) e C(-6,5)
Me ajudem por favor!!!
Soluções para a tarefa
Respondido por
1
Usar as seguintes fórmulas:
![x_{g} = \frac{ x_{a} + x_{b}+ x_{c} }{3} \\ \\ y_{g} = \frac{ y_{a} + y_{b}+ y_{c} }{3} x_{g} = \frac{ x_{a} + x_{b}+ x_{c} }{3} \\ \\ y_{g} = \frac{ y_{a} + y_{b}+ y_{c} }{3}](https://tex.z-dn.net/?f=+x_%7Bg%7D+%3D+%5Cfrac%7B+x_%7Ba%7D+%2B+x_%7Bb%7D%2B+x_%7Bc%7D+%7D%7B3%7D++%5C%5C++%5C%5C++y_%7Bg%7D+%3D+%5Cfrac%7B+y_%7Ba%7D+%2B+y_%7Bb%7D%2B+y_%7Bc%7D++%7D%7B3%7D+)
![x_{B} = \frac{(-2)+(-5)+(-6)}{3} \\ \\ x_{B} = \frac{-13}{3} \\ \\ x_{B} = -4,3 x_{B} = \frac{(-2)+(-5)+(-6)}{3} \\ \\ x_{B} = \frac{-13}{3} \\ \\ x_{B} = -4,3](https://tex.z-dn.net/?f=+x_%7BB%7D+%3D+%5Cfrac%7B%28-2%29%2B%28-5%29%2B%28-6%29%7D%7B3%7D+++%5C%5C++%5C%5C++x_%7BB%7D+%3D+%5Cfrac%7B-13%7D%7B3%7D++%5C%5C++%5C%5C++x_%7BB%7D+%3D+-4%2C3)
![y_{B} = \frac{4+1+5}{3} \\ \\ y_{B} = \frac{10}{3} \\ \\ y_{B} =3,3 y_{B} = \frac{4+1+5}{3} \\ \\ y_{B} = \frac{10}{3} \\ \\ y_{B} =3,3](https://tex.z-dn.net/?f=+y_%7BB%7D+%3D+%5Cfrac%7B4%2B1%2B5%7D%7B3%7D++%5C%5C++%5C%5C++y_%7BB%7D++%3D+%5Cfrac%7B10%7D%7B3%7D++%5C%5C++%5C%5C++y_%7BB%7D+%3D3%2C3)
Coordenada do baricentro: B(-4,3 , 3,3)
Coordenada do baricentro: B(-4,3 , 3,3)
Perguntas interessantes