Matemática, perguntado por Chitta23, 5 meses atrás

Calcule m sabendo que sen x = m cos x = -m​

Soluções para a tarefa

Respondido por elizeugatao
1

\displaystyle \sf \text{Rela{\c c}{\~a}o Fundamental da trigonometria } : \\\\ sen^2 x+cos^2 x= 1  \\\\ temos : \\\\ sen \ x = m \ \ , \ \ cos\ x = -m \\\\ Da{\'i}}: \\\\ m^2+(-m)^2 = 1 \to  m^2+m^2 = 1\\\\ 2m^2 = 1 \to  m^2 = \frac{1}{2}  \\\\ m =\pm \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\\\\\ portanto : \\\\ \boxed{\begin{array}{I} \displaystyle \sf m =\frac{\sqrt{2}}{2}\\\\ \displaystyle \sf ou \\\\\ \displaystyle \sf m = \frac{-\sqrt{2}}{2} \end{array}}\checkmark

Perguntas interessantes