Calcule essa matriz:
B.(A.C)
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
Temos que como condição necessária para a multiplicação entre uma matriz Aij (correspondendo seu índice i ao número de linhas e j ao seu número de colunas) e Bmn (de mesma forma correspondendo seu índice m ao número de linhas e n ao seu número de colunas) o número de colunas da primeira matriz deve ser igual ao número de linhas da segunda coluna de tal forma que a nova matriz C tenha seus índices iguais a i e m, ou seja, o número de linhas da primeira matriz e o número de colunas da segunda matriz.
Tendo satisfeita a condição de j = m temos que quando multiplicamos uma matriz A por outra matriz B, gerando uma nova matriz C, teremos que cada um dos termos Cin será composto por um produto escalar algébrico. Isto significa que para cada termo Cst da matriz, sendo s<i e t<n, teremos que realizar uma soma do produto de todos os termos, tomados de deois a dois, da linha s da primeira matriz pela coluna t da segunda matriz.
(Dica: ao calcular cada termo trace um reta na linha x da matriz A e um reta na coluna y da matriz B, será mais difícil se perder nas contas fazendo isso :) )
Temos também que a ordem da multiplicação das matrizes é extremamente importante, não só quanto à aplicação da esquerda para a direita como também respeitando-se à ordem de prioridades dada por
1º) Parênteses
3º) Chaves
2º) Colchetes
Nossas matrizes são da forma
Portanto nossa nova matriz será da forma
Agora a segunda parte da operação. Nossas matrizes são da forma
Portanto nossa nova matriz será da forma
♥? ★★★★★? Melhor resposta? Você decide.
Bons estudos. ≧◉ᴥ◉≦
"Absque sudore et labore nullum opus perfectum est."