Calcule as raízes cúbicas de 8i de acordo com a fórmula de Moivre
Soluções para a tarefa
Respondido por
3
Resposta:
--> U₀= √3 +i
--> U₁= - √3 +i
--> U₂= - 2i
Explicação passo-a-passo:
fórmula de moivre:
Uₖ = ⁿ√p [ cos (θ/n +k× 2π/n) +i×sen θ/n +k× 2π/n]
logo:
z= 8i, P= |8i| = 8, θ= arg (8i) = π/2, n= 3, k= 0,1,2 ; pois Z é o radicando, P é o módulo de Z, θ é o argumento, N a quantidade de raízes de 1 a N e k os antecessores de N comparecidos entre 0 e (N-1)
Uₖ = ³√8 [ cos (π/2/3 +k× 2π/3) +i×sen π/2/3 +k×2π/3] --> Uₖ = 2×[cos(π/6 +k×2π/3) + i×sen (π/6 +k×2π/3)] tal que k ∈ {0,1,2}
então:
U₀= 2×(cos π/6 +i×sen π/6)
U₁= 2×(cos 5π/6 +i×sen 5π/6)
U₂= 2×(cos 3π/2 +i×sen 3π/2)
Anexos:
mege31310:
Nossa, incrível, valeu muitooooo
Perguntas interessantes