calcule as raízes, caso existam, das seguintes funções quadraticas
a) y= x² - 1
b)y= x² + 3x + 2
c)y= x² + x - 2
d)y= x² - 6 + 9
e)y= x² - 4x + 3
f)y= x² + 4x + 3
g)y= x² - x - 2
h)y= x² - 2x - 3
Soluções para a tarefa
Respondido por
267
a)
y = x² - 1
0 = x² - 1
1 = x²
x² = 1
x = √1
x = + 1 e x = - 1
***************************************************
b)
y= x² + 3x + 2
0 = x² + 3x + 2
x² + 3x + 2 = 0
a = 1; b = 3; c = 2
Δ = b² - 4ac
Δ = 3² - 4.1.2
Δ = 9 - 8
Δ = 1
x = - b +/- √Δ = - 3 + / - √1
2a 2.1
x = - 3 + 1 = - 2/2 = - 1
2
x = - 3 - 1 = - 4/2 = - 2
2
R.: x = - 1 e x = - 2
******************************************
c)
y= x² + x - 2
0 = x² + x - 2
x² + x - 2 = 0
a = 1; b = 1; c = - 2
Δ = b² - 4ac
Δ = 1² - 4.1.( -2)
Δ = 1 + 8
Δ = 9
x = - b +/- √Δ = - 1 +/- √9
2a 2.1
x = - 1 + 3 = 2/2 = 1
2
x = - 1 - 3 = - 4/2 = - 2
2
R.: x = 1 e x = - 2
****************************************************
d)
y= x² - 6x + 9
0 = x² - 6x + 9
x² - 6x + 9 = 0
a = 1; b = - 6; c = 9
Δ = b² - 4ac
Δ = (-6)² - 4.1.9
Δ = 36 - 36
Δ = 0
x = - b + / - √Δ = - ( - 6) +/ - 0
2a 2.1
x = 6 = 3
2
R.: x = 3
------------------------------------------------------------
e)
y= x² - 4x + 3
0 = x² - 4x + 3
x² - 4x + 3 = 0
a = 1; b = - 4; c = 3
Δ = b² - 4ac
Δ = (-4)² - 4.1.3
Δ = 16 - 12
Δ = 4
x = - b +/- √Δ = - ( - 4) +/- √4
2a 2.1
x = 4 + 2 = 6/2 = 3
2
x = 4 - 2 = 2/2 = 1
2
R.: x = 1 e x = 3
----------------------------------------------------------------
f)
y= x² + 4x + 3
0 = x² + 4x + 3
x² + 4x + 3 = 0
a = 1; b = 4; c = 3
Δ = b² - 4ac
Δ = 4² - 4.1.3
Δ = 16 - 12
Δ = 4
x = - b +/- √Δ = - 4 + / - √4
2a 2.1
x = - 4 + 2 = - 2/2 = - 1
2
x = - 4 - 2 = - 6/2 = - 3
2
R.: x = - 1 e x = - 3
---------------------------------------------------------------
g)
y= x² - x - 2
x² - x - 2 = 0
a = 1; b = - 1; c = - 2
Δ = b² - 4ac
Δ = (-1)² - 4.1.(-2)
Δ = 1 + 8
Δ = 9
x = - b +/- √Δ = - ( - 1) +/- √9
2a 2.1
x = 1 + 3 = 4/2 = 2
2
x = 1 - 3 = - 2/2 = - 1
2
R.: x = 2 e x = - 1
**********************************************
h)
y= x² - 2x - 3
0 = x² - 2x - 3
x² - 2x - 3 = 0
a = 1; b = - 2; c = - 3
Δ = b² - 4ac
Δ = (-2)² - 4.1.(-3)
Δ = 4 + 12
Δ = 16
x = - b +/- √Δ = - ( - 2) +/- √16
2a 2.1
x = 2 + 4 = 6/2 = 3
2
x = 2 - 4 = - 2/2 = - 1
2
R.: x = 3 e x = - 1
y = x² - 1
0 = x² - 1
1 = x²
x² = 1
x = √1
x = + 1 e x = - 1
***************************************************
b)
y= x² + 3x + 2
0 = x² + 3x + 2
x² + 3x + 2 = 0
a = 1; b = 3; c = 2
Δ = b² - 4ac
Δ = 3² - 4.1.2
Δ = 9 - 8
Δ = 1
x = - b +/- √Δ = - 3 + / - √1
2a 2.1
x = - 3 + 1 = - 2/2 = - 1
2
x = - 3 - 1 = - 4/2 = - 2
2
R.: x = - 1 e x = - 2
******************************************
c)
y= x² + x - 2
0 = x² + x - 2
x² + x - 2 = 0
a = 1; b = 1; c = - 2
Δ = b² - 4ac
Δ = 1² - 4.1.( -2)
Δ = 1 + 8
Δ = 9
x = - b +/- √Δ = - 1 +/- √9
2a 2.1
x = - 1 + 3 = 2/2 = 1
2
x = - 1 - 3 = - 4/2 = - 2
2
R.: x = 1 e x = - 2
****************************************************
d)
y= x² - 6x + 9
0 = x² - 6x + 9
x² - 6x + 9 = 0
a = 1; b = - 6; c = 9
Δ = b² - 4ac
Δ = (-6)² - 4.1.9
Δ = 36 - 36
Δ = 0
x = - b + / - √Δ = - ( - 6) +/ - 0
2a 2.1
x = 6 = 3
2
R.: x = 3
------------------------------------------------------------
e)
y= x² - 4x + 3
0 = x² - 4x + 3
x² - 4x + 3 = 0
a = 1; b = - 4; c = 3
Δ = b² - 4ac
Δ = (-4)² - 4.1.3
Δ = 16 - 12
Δ = 4
x = - b +/- √Δ = - ( - 4) +/- √4
2a 2.1
x = 4 + 2 = 6/2 = 3
2
x = 4 - 2 = 2/2 = 1
2
R.: x = 1 e x = 3
----------------------------------------------------------------
f)
y= x² + 4x + 3
0 = x² + 4x + 3
x² + 4x + 3 = 0
a = 1; b = 4; c = 3
Δ = b² - 4ac
Δ = 4² - 4.1.3
Δ = 16 - 12
Δ = 4
x = - b +/- √Δ = - 4 + / - √4
2a 2.1
x = - 4 + 2 = - 2/2 = - 1
2
x = - 4 - 2 = - 6/2 = - 3
2
R.: x = - 1 e x = - 3
---------------------------------------------------------------
g)
y= x² - x - 2
x² - x - 2 = 0
a = 1; b = - 1; c = - 2
Δ = b² - 4ac
Δ = (-1)² - 4.1.(-2)
Δ = 1 + 8
Δ = 9
x = - b +/- √Δ = - ( - 1) +/- √9
2a 2.1
x = 1 + 3 = 4/2 = 2
2
x = 1 - 3 = - 2/2 = - 1
2
R.: x = 2 e x = - 1
**********************************************
h)
y= x² - 2x - 3
0 = x² - 2x - 3
x² - 2x - 3 = 0
a = 1; b = - 2; c = - 3
Δ = b² - 4ac
Δ = (-2)² - 4.1.(-3)
Δ = 4 + 12
Δ = 16
x = - b +/- √Δ = - ( - 2) +/- √16
2a 2.1
x = 2 + 4 = 6/2 = 3
2
x = 2 - 4 = - 2/2 = - 1
2
R.: x = 3 e x = - 1
viniciusfelipe7:
valew
Respondido por
43
As raízes de uma função quadrática são os valores que toma a variável independente quando a função e nula.
a)
x² - 1 = 0
x² = 1
x = √1
x1 = - 1
x2 = 1 S = {- 1, 1}
b)
x² + 3x + 2 = 0
fatorando
(x + 2)(x + 1) = 0
x + 2 = 0
x1 = -2
x + 1 = 0
x2 = - 1 S = {- 2, 2}
c)
x² + x - 2 = 0
fatorando
(x + 2)(x - 1) = 0
x + 2 = 0
x1 = - 2
x - 1 = 0
x2 = 1 S = {- 2, 1}
d)
x² - 6 + 9 = 0
x² + 3 = 0
x² = - 3
x = √ - 3 NÃO TEM RAÍZES REAIS
e)
x² - 4x + 3 = 0
fatorando
(x - 3)(x - 1) = 0
x - 3 = 0
x1 = 3
x - 1 = 0
x2 = 1 S = { 1, 3 }
f)
x² + 4x + 3 = 0
fatorando
(x + 1)(x + 3) = 0
x + 1 = 0
x1 = - 1
x + 3 = 0
x2 = - 3 S = {- 3, - 1}
g)
x² - x - 2
fatorando
(x - 2)(x + 1) = 0
x - 2 = 0
x1 = 2
x + 1 = 0
x2 = - 1 S = {- 1, 2}
h)
x² - 2x - 3 = 0
fatorando
(x - 3)(x + 1) = 0
x - 3 = 0
x1 = 3
x + 1 = 0
x2 = - 1 S = {- 1, 3}
Perguntas interessantes