Matemática, perguntado por andradeg382, 10 meses atrás

Calcule as integrais abaixo

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1

a)

I = \int\limits^{270\°}_{90\°} {sen(x)} \, dx

I=-cos(x)\limits|^{270\°}_{90\°}

I = -cos(270\°)-(-cos(90\°))

I = -cos(270\°)+cos(90\°)

I = 0+0

I = 0

b)

I = \int\limits^{4}_{0} {(e^x+x^3)} \, dx

I = \int\limits^{4}_{0} {e^x} \, dx + \int\limits^{4}_{0} {x^3} \, dx

I = e^{x}\limits|^{4}_{0}+\frac{x^4}{4}\limits|^{4}_{0}

I = (e^{4}-e^{0})+(\frac{4^4}{4}-\frac{0^4}{4})

I = (e^{4}-1)+(\frac{256}{4}-0)

I  = e^4-1+64

I = e^4+63

c)

I = \int\limits^{4}_{1} {(100x^{-3}+\frac{1}{x})} \, dx

I = \int\limits^{4}_{1} {100x^{-3}} \, dx+ \int\limits^{4}_{1} {\frac{1}{x}} \, dx

I = (\frac{100}{-2}x^{-2})\limits|^{4}_{0}+(ln|x|)\limits|^{4}_{0}

I = (-50x^{-2})\limits|^{4}_{0}+(ln|x|)\limits|^{4}_{0}

I = -50(4^{-2}-1^{-2})+ln|4|-ln|1|

I = -50(\frac{1}{16}-1)+ln|4|-ln|1|

I = \frac{-50}{16}+50+ln|4|

I = -3,125+50+ln|4|

I = 46,875+ln|4|

Portanto, letra D)

Perguntas interessantes