Calcule a soma dos 80 primeiros termos da P.A ( -15, -11, -7, -3 ...)
Soluções para a tarefa
Respondido por
1
Primeiro, vamos encontrar o a80.
![\boxed{a_n=a_1+(n-1)*r}\\\\ r=-11-(-15) \rightarrow\ 11+15=4\\\\\ a_8_0=-15+(80-1)*4\\\\\ a_8_0=-15+79*4\\\\\ a_8_0=-15+316\\\\ \boxed{a_8_0=301} \boxed{a_n=a_1+(n-1)*r}\\\\ r=-11-(-15) \rightarrow\ 11+15=4\\\\\ a_8_0=-15+(80-1)*4\\\\\ a_8_0=-15+79*4\\\\\ a_8_0=-15+316\\\\ \boxed{a_8_0=301}](https://tex.z-dn.net/?f=%5Cboxed%7Ba_n%3Da_1%2B%28n-1%29%2Ar%7D%5C%5C%5C%5C+r%3D-11-%28-15%29+%5Crightarrow%5C+11%2B15%3D4%5C%5C%5C%5C%5C+a_8_0%3D-15%2B%2880-1%29%2A4%5C%5C%5C%5C%5C+a_8_0%3D-15%2B79%2A4%5C%5C%5C%5C%5C+a_8_0%3D-15%2B316%5C%5C%5C%5C+%5Cboxed%7Ba_8_0%3D301%7D)
Agora, a somatória:
![\boxed{S_n=\frac{(a_1+a_n)*n}{2}}\\\\\ S_8_0=\frac{(-15+301)*80}{2}\\\\ S_8_0=286*40\\\\ \boxed{S_8_0=11440} \boxed{S_n=\frac{(a_1+a_n)*n}{2}}\\\\\ S_8_0=\frac{(-15+301)*80}{2}\\\\ S_8_0=286*40\\\\ \boxed{S_8_0=11440}](https://tex.z-dn.net/?f=%5Cboxed%7BS_n%3D%5Cfrac%7B%28a_1%2Ba_n%29%2An%7D%7B2%7D%7D%5C%5C%5C%5C%5C+S_8_0%3D%5Cfrac%7B%28-15%2B301%29%2A80%7D%7B2%7D%5C%5C%5C%5C+S_8_0%3D286%2A40%5C%5C%5C%5C+%5Cboxed%7BS_8_0%3D11440%7D+)
Agora, a somatória:
Perguntas interessantes
Geografia,
1 ano atrás
ENEM,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Administração,
1 ano atrás