CALCULE A MEDIDA DA MEDIANA RELATIVA AO VÉRTICE C DO TRIANGULO DE VERTICES A(3, 2), B(5, -3), C(0, -4)
Soluções para a tarefa
Respondido por
3
Encontrando o ponto médio do segmento ![\mathsf{\overline{AB}:} \mathsf{\overline{AB}:}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Coverline%7BAB%7D%3A%7D)
![\mathsf{M(x_{_{M}},\;y_{_{M}})}\\\\\\\\ \mathsf{x_{_{M}}=\dfrac{x_{_{A}}+x_{_{B}}}{2}}\\\\\\ \mathsf{x_{_{M}}=\dfrac{3+5}{2}}\\\\\\ \boxed{\begin{array}{c}\mathsf{x_{_{M}}=4} \end{array}}\\\\\\\\ \mathsf{y_{_{M}}=\dfrac{y_{_{A}}+y_{_{B}}}{2}}\\\\\\ \mathsf{y_{_{M}}=\dfrac{2-3}{2}}\\\\\\ \boxed{\begin{array}{c}\mathsf{y_{_{M}}=-\,\dfrac{1}{2}} \end{array}} \mathsf{M(x_{_{M}},\;y_{_{M}})}\\\\\\\\ \mathsf{x_{_{M}}=\dfrac{x_{_{A}}+x_{_{B}}}{2}}\\\\\\ \mathsf{x_{_{M}}=\dfrac{3+5}{2}}\\\\\\ \boxed{\begin{array}{c}\mathsf{x_{_{M}}=4} \end{array}}\\\\\\\\ \mathsf{y_{_{M}}=\dfrac{y_{_{A}}+y_{_{B}}}{2}}\\\\\\ \mathsf{y_{_{M}}=\dfrac{2-3}{2}}\\\\\\ \boxed{\begin{array}{c}\mathsf{y_{_{M}}=-\,\dfrac{1}{2}} \end{array}}](https://tex.z-dn.net/?f=%5Cmathsf%7BM%28x_%7B_%7BM%7D%7D%2C%5C%3By_%7B_%7BM%7D%7D%29%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx_%7B_%7BM%7D%7D%3D%5Cdfrac%7Bx_%7B_%7BA%7D%7D%2Bx_%7B_%7BB%7D%7D%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bx_%7B_%7BM%7D%7D%3D%5Cdfrac%7B3%2B5%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7Bx_%7B_%7BM%7D%7D%3D4%7D+%5Cend%7Barray%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By_%7B_%7BM%7D%7D%3D%5Cdfrac%7By_%7B_%7BA%7D%7D%2By_%7B_%7BB%7D%7D%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7By_%7B_%7BM%7D%7D%3D%5Cdfrac%7B2-3%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathsf%7By_%7B_%7BM%7D%7D%3D-%5C%2C%5Cdfrac%7B1%7D%7B2%7D%7D+%5Cend%7Barray%7D%7D)
O ponto médio do segmento
é o ponto ![\mathsf{M\!\left(4,\;-\,\frac{1}{2} \right ).} \mathsf{M\!\left(4,\;-\,\frac{1}{2} \right ).}](https://tex.z-dn.net/?f=%5Cmathsf%7BM%5C%21%5Cleft%284%2C%5C%3B-%5C%2C%5Cfrac%7B1%7D%7B2%7D+%5Cright+%29.%7D)
_________________________
A mediana procurada é o segmento
O comprimento da mediana é
![\mathsf{d_{_{C,\,M}}=\sqrt{(x_{_{M}}-x_{_{C}})^{2}+(y_{_{M}}-y_{_{C}})^{2}}}\\\\ \mathsf{=\sqrt{(4-0)^{2}+\left(-\,\dfrac{1}{2}-(-4)\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{4^2+\left(-\,\dfrac{1}{2}+4\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{4^2+\left(-\,\dfrac{1}{2}+\dfrac{8}{2}\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{4^2+\left(\dfrac{7}{2}\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{16+\dfrac{49}{4}}} \mathsf{d_{_{C,\,M}}=\sqrt{(x_{_{M}}-x_{_{C}})^{2}+(y_{_{M}}-y_{_{C}})^{2}}}\\\\ \mathsf{=\sqrt{(4-0)^{2}+\left(-\,\dfrac{1}{2}-(-4)\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{4^2+\left(-\,\dfrac{1}{2}+4\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{4^2+\left(-\,\dfrac{1}{2}+\dfrac{8}{2}\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{4^2+\left(\dfrac{7}{2}\right)^{\!\!2}}}\\\\\\ \mathsf{=\sqrt{16+\dfrac{49}{4}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bd_%7B_%7BC%2C%5C%2CM%7D%7D%3D%5Csqrt%7B%28x_%7B_%7BM%7D%7D-x_%7B_%7BC%7D%7D%29%5E%7B2%7D%2B%28y_%7B_%7BM%7D%7D-y_%7B_%7BC%7D%7D%29%5E%7B2%7D%7D%7D%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Csqrt%7B%284-0%29%5E%7B2%7D%2B%5Cleft%28-%5C%2C%5Cdfrac%7B1%7D%7B2%7D-%28-4%29%5Cright%29%5E%7B%5C%21%5C%212%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Csqrt%7B4%5E2%2B%5Cleft%28-%5C%2C%5Cdfrac%7B1%7D%7B2%7D%2B4%5Cright%29%5E%7B%5C%21%5C%212%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Csqrt%7B4%5E2%2B%5Cleft%28-%5C%2C%5Cdfrac%7B1%7D%7B2%7D%2B%5Cdfrac%7B8%7D%7B2%7D%5Cright%29%5E%7B%5C%21%5C%212%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Csqrt%7B4%5E2%2B%5Cleft%28%5Cdfrac%7B7%7D%7B2%7D%5Cright%29%5E%7B%5C%21%5C%212%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Csqrt%7B16%2B%5Cdfrac%7B49%7D%7B4%7D%7D%7D)
![\mathsf{=\sqrt{\dfrac{64}{4}+\dfrac{49}{4}}}\\\\\\ \mathsf{=\sqrt{\dfrac{113}{4}}}\\\\\\ \mathsf{=\dfrac{\sqrt{113}}{2}~u.c.} \mathsf{=\sqrt{\dfrac{64}{4}+\dfrac{49}{4}}}\\\\\\ \mathsf{=\sqrt{\dfrac{113}{4}}}\\\\\\ \mathsf{=\dfrac{\sqrt{113}}{2}~u.c.}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3D%5Csqrt%7B%5Cdfrac%7B64%7D%7B4%7D%2B%5Cdfrac%7B49%7D%7B4%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Csqrt%7B%5Cdfrac%7B113%7D%7B4%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%3D%5Cdfrac%7B%5Csqrt%7B113%7D%7D%7B2%7D%7Eu.c.%7D)
O ponto médio do segmento
_________________________
A mediana procurada é o segmento
Perguntas interessantes
Biologia,
1 ano atrás
Português,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
História,
1 ano atrás