Matemática, perguntado por LucasJairo, 1 ano atrás

Calcule a integral por substituição de variável

Anexos:

Lukyo: ∫ (3x^2 + 1)^3 x dx

Soluções para a tarefa

Respondido por Lukyo
0
\displaystyle I=\int\!(3x^2+1)^3\,x\,dx\\\\\\ =\int\!\frac{1}{6}\cdot 6\cdot (3x^2+1)^3\,x\,dx\\\\\\ =\frac{1}{6}\int\!(3x^2+1)^3\cdot 6x\,dx~~~~~~\mathbf{(i)}


Faça a seguinte substituição:

3x^2+1=u~~\Rightarrow~~6x\,dx=du


Substituindo, a integral \mathbf{(i)} fica

\displaystyle =\frac{1}{6}\int\!u^3\,du\\\\\\ =\frac{1}{6}\cdot \dfrac{u^{3+1}}{3+1}+C\\\\\\ =\frac{1}{6}\cdot \dfrac{u^4}{4}+C\\\\\\ =\frac{1}{24}\,u^4+C\\\\\\ =\frac{1}{24}\,(3x^2+1)^4+C\\\\\\\\ \therefore~~\boxed{\begin{array}{c} \displaystyle\int\!(3x^2+1)^3\,x\,dx=\frac{1}{24}\,(3x^2+1)^4+C \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6210915
Respondido por Usuário anônimo
0

\sf \displaystyle \int \left(3x^2+1\right)^3xdx\\\\\\=\int \frac{u^3}{6}du\\\\\\=\frac{1}{6}\cdot \int \:u^3du\\\\\\{Aplique\:a\:regra\:da\:potência}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1\\\\\\=\frac{1}{6}\cdot \frac{u^{3+1}}{3+1}\\\\\\=\frac{1}{6}\cdot \frac{\left(3x^2+1\right)^{3+1}}{3+1}\\\\\\=\frac{1}{24}\left(3x^2+1\right)^4

\to \boxed{\sf =\frac{1}{24}\left(3x^2+1\right)^4+C}

Perguntas interessantes