Matemática, perguntado por LucasJairo, 1 ano atrás

Calcule a integral por partes

Anexos:

Lukyo: ∫ x^2 e^(2x) dx

Soluções para a tarefa

Respondido por trindadde
2
Olá!
  
    Sejam   u=x^2,\;\;dv=e^{2x}  . Logo,


\displaystyle \int{u\;dv}=uv-\displaystyle \int{v\;du} \\ \\
\displaystyle \int{x^2\cdot e^{2x}dx=x^2
\cdot \dfrac{e^{2x}}{2}- \displaystyle \int{\dfrac{e^{2x}}{2}\cdot 2x}\;dx =
\\ \\ \\ = \dfrac{1}{2}x^2\cdot e^{2x}-\displaystyle\int{xe^{2x}}dx =

= \dfrac{1}{2}x^2\cdot e^{2x}-\left(x\cdot \dfrac{e^{2x}}{2}-
\displaystyle\int{\dfrac{e^{2x}}{2}\cdot 1}dx\right) = \\ \\ \\ =
\dfrac{1}{2}x^2\cdot e^{2x}-\left(\dfrac{1}{2}x\cdot e^{2x}-\dfrac{1}{2}
\displaystyle\int{e^{2x}}dx\right) = \\ \\ \\ =
\dfrac{1}{2}x^2\cdot e^{2x}-\dfrac{1}{2}x\cdot e^{2x}+\dfrac{1}{2}\cdot 
\dfrac{e^{2x}}{2}+k,\;\; k\in\mathbb{R} = \\ \\ =
\dfrac{1}{2}\cdot e^{2x}\left(x^2-x+\dfrac{1}{2}\right)+k,\;\; k\in\mathbb{R}

Bons estudos!
Respondido por CyberKirito
0

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/6211361

                                                                                         

\displastyle\sf\int x^2e^{2x}~dx\\\sf fac_{\!\!,}a~u=x^2\implies du=2x~dx\\\sf dv=e^{2x}~dx\implies v=\dfrac{1}{2}e^{2x}\\\displaystyle\sf \int u\cdot dv=u\cdot v-\int v\cdot du\\\displaystyle\sf\int x^2e^{2x}~dx=x^2\cdot\dfrac{1}{2}e^{2x}-\int\dfrac{1}{\diagup\!\!\!2}e^{2x}\cdot\diagup\!\!\!2x~dx\\\displaystyle\sf\int x^2e^{2x}~dx=\dfrac{1}{2}x^2e^{2x}-\int x\cdot e^{2x}~dx\\\tt fac_{\!\!,}a~u_1=x\implies du_1=dx\\\sf dv_1=e^{2x}~dx\implies v_1=\dfrac{1}{2}e^{2x}

\displaystyle\sf\int u_1\cdot dv_1=u_1\cdot v_1-\int v_1~dv_1\\\displaystyle\sf\int x\cdot e^{2x}~dx=x\cdot\dfrac{1}{2}e^{2x}-\int\dfrac{1}{2}e^{2x}~dx\\\displastyle\sf\int x\cdot e^{2x}~dx=\dfrac{1}{2}x\cdot e^{2x}-\dfrac{1}{2}\cdot\dfrac{1}{2}e^{2x}=\dfrac{1}{2}e^{2x}\left(x-\dfrac{1}{2}\right)+c_1

\displaystyle\sf\int x^2\cdot e^{2x}~dx=\dfrac{1}{2}x^2\cdot e^{2x}-\dfrac{1}{2}e^{2x}\cdot\left(x-\dfrac{1}{2}\right)+k

Perguntas interessantes