Matemática, perguntado por LucasJairo, 1 ano atrás

Calcule a integral por partes

Anexos:

Lukyo: ∫ x . 2^x dx

Soluções para a tarefa

Respondido por Lukyo
1
\displaystyle I=\int\!x\cdot 2^x\,dx


Método de integração por partes:

\begin{array}{lcl} u=x&~\Rightarrow~&du=dx\\\\ dv=2^x\,dx&~\Leftarrow~&v=\dfrac{2^x}{\mathrm{\ell n\,}2}\\\\ \end{array}\\\\\\ \displaystyle\int\!u\,dv=uv-\int\!v\,du\\\\\\ \int\!x\cdot 2^x\,dx=x\cdot \frac{2^x}{\mathrm{\ell n\,}2}-\int\!\frac{2^x}{\mathrm{\ell n\,}2}\,dx\\\\\\ I=\frac{x\cdot 2^x}{\mathrm{\ell n\,}2}-\frac{1}{\mathrm{\ell n\,}2}\int\!2^x\,dx\\\\\\ I=\frac{x\cdot 2^x}{\mathrm{\ell n\,}2}-\frac{1}{\mathrm{\ell n\,}2}\cdot \left(\frac{2^x}{\mathrm{\ell n\,}2} \right )+C\\\\\\ I=\frac{x\cdot 2^x}{\mathrm{\ell n\,}2}-\frac{2^x}{(\mathrm{\ell n\,}2)^2}+C\\\\\\\\ \therefore~~\boxed{\begin{array}{c} \displaystyle\int\!x\cdot 2^x\,dx=\frac{x\cdot 2^x}{\mathrm{\ell n\,}2}-\frac{2^x}{(\mathrm{\ell n\,}2)^2}+C \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6211356
Respondido por Usuário anônimo
0

\sf \displaystyle \int \:x\cdot \:2^xdx\\\\\\=\frac{2^xx}{ln \left(2\right)}-\int \frac{2^x}{ln \left(2\right)}dx\\\\\\=\frac{2^xx}{ln \left(2\right)}-\frac{2^x}{ln ^2\left(2\right)}\\\\\\\to \boxed{\sf =\frac{2^xx}{ln \left(2\right)}-\frac{2^x}{ln ^2\left(2\right)}+C}

Perguntas interessantes