Matemática, perguntado por superaks, 1 ano atrás

Calcule a integral indefinida.


\mathsf{\displaystyle\int\dfrac{x+sen(x)-cos(x)-1}{x+e^x+sen(x)}~dx}


_____________

Por favor responder de forma detalhada.

Soluções para a tarefa

Respondido por viniciusredchil
6
I=\mathsf{\displaystyle\int\dfrac{x+sen(x)-cos(x)-1}{x+e^x+sen(x)}~dx}\\\\I=\mathsf{\displaystyle\int\dfrac{(x+sen(x)+e^x)-e^x-cos(x)-1}{x+e^x+sen(x)}~dx}\\\\I=\mathsf{\displaystyle\int\dfrac{-e^x-cos(x)-1}{x+e^x+sen(x)}+1~dx}\\\\I= - \mathsf{\displaystyle\int\dfrac{e^x+cos(x)+1}{x+e^x+sen(x)}~dx+\int dx}\ \\\\I=\mathsf{-ln|x+e^x+sen(x)|+x+C}
Respondido por CyberKirito
1

\displaystyle\sf{\int\dfrac{x+sen(x)-cos(x)-1}{x+e^x+sen(x)}~dx}

Somando e subtraindo \sf{e^x} no numerador temos:

\displaystyle\sf{\int\dfrac{\left[x+sen(x)+e^x\right]-e^x-cos(x)-1}{x+e^x+sen(x)}~dx}\\\sf{\displaystyle\int\dfrac{x+sen(x)+e^x}{x+sen(x)+e^x}~dx-\int\dfrac{e^x+cos(x)+1}{x+e^x+sen(x)}~dx}\\\displaystyle\sf{\int~dx-\int\dfrac{e^x+cos(x)+1}{x+e^x+sen(x)}~dx}

faça:

\sf{u=x+e^x+sen(x)\implies du=1+e^x+cos(x)dx}

\displaystyle\sf{\int\dfrac{e^x+cos(x)+1}{x+e^x+sen(x)}~dx=\int\dfrac{du}{u}=\ell n|u|+k}

Portanto

\boxed{\boxed{\displaystyle\sf{\int\dfrac{x+sen(x)-cos(x)+1}{x+e^x+sen(x)}~dx=x-\ell n|x+e^x+sen(x)|+k}}}

Perguntas interessantes