Matemática, perguntado por marianaluizas, 1 ano atrás

calcule a diferença entre √2 /2√2-3 e 2√2/2√2+3

Soluções para a tarefa

Respondido por lavinnea
0
 \frac{ \sqrt{2} }{2 \sqrt{2} -3} - \frac{2 \sqrt{2} }{2 \sqrt{2}+3 } = \\  \\ mmc=(2 \sqrt{2} -3)(2 \sqrt{2} +3) \\  \\  \frac{ \sqrt{2}(2 \sqrt{2} +3)-2 \sqrt{2} (2 \sqrt{2} -3) }{(2 \sqrt{2} -3)(2 \sqrt{2}+3) } = \\  \\  \frac{2 \sqrt{4}+3 \sqrt{2} -4 \sqrt{4} +6 \sqrt{2}  }{4 \sqrt{4}+6 \sqrt{2} -6 \sqrt{2} -9 } = \\  \\  \frac{2.(2)+3 \sqrt{2}-4(2)+6 \sqrt{2}  }{4.(2)-9} = \\  \\  \frac{3 \sqrt{2}+6 \sqrt{2}+4-8  }{8-9} = \\  \\  \frac{9 \sqrt{2}-4 }{-1} = \\  \\ -1(9 \sqrt{2} -4)=4-9 \sqrt{2}
Respondido por jacquefr
0
 \dfrac{ \sqrt{2} }{2 \sqrt{2}-3 } - \dfrac{2 \sqrt{2} }{2 \sqrt{2} +3}  \\  \\  \dfrac{ \sqrt{2} \cdot (2 \sqrt{2} +3)-2 \sqrt{2} \cdot (2 \sqrt{2} -3)  }{(2 \sqrt{2}-3) \cdot (2 \sqrt{2} +3) } \\  \\  \dfrac{2 \sqrt{2 \cdot 2}+3 \sqrt{2}-2 \cdot 2 \sqrt{2 \cdot 2}+2 \cdot 3 \sqrt{2}    }{2 \cdot 2 \sqrt{2 \cdot 2}+2 \cdot 3 \sqrt{2} -3 \cdot 2 \sqrt{2} - 3 \cdot 3}  \\  \\  \dfrac{2 \sqrt{4}+3 \sqrt{2}-4 \sqrt{4}+6 \sqrt{2}    }{4 \sqrt{4} +6 \sqrt{2}-6 \sqrt{2}-9  }
\dfrac{2 \sqrt{4}+3 \sqrt{2}+6 \sqrt{2} -4 \sqrt{4} }{4 \sqrt{4} +6 \sqrt{2}-6 \sqrt{2}-9 } \\ \\ \dfrac{2 \cdot 2+ \sqrt{2} \cdot (3+6)-4 \cdot 2 }{4 \cdot 2-9} \\ \\  \dfrac{4+ \sqrt{2} \cdot 9 -8 }{8-9} \\ \\ \dfrac{-4+ \sqrt{2} \cdot 9}{-1} \\ \\ -(-4+ \sqrt{2} \cdot 9) \\ \\ 4- \sqrt{2} \cdot 9 \\ \\\boxed{ 4-9 \sqrt{2}}

------------------------------------------------------------------------------------------------------

\dfrac{ \sqrt{2} }{2 \sqrt{2}}-3 - \dfrac{2 \sqrt{2} }{2 \sqrt{2} }+3 \\  \\  \dfrac{ \sqrt{2} }{2 \sqrt{2}} - \dfrac{2 \sqrt{2} }{2 \sqrt{2} } \\  \\  \dfrac{ \sqrt{2} \cdot (1-2) }{2 \sqrt{2} }  \\  \\  \dfrac{ \sqrt{2} \cdot (-1) }{2 \sqrt{2} }  \\  \\  \dfrac{-1 \sqrt{2} }{2 \sqrt{2} } \\  \\ \boxed{ -\dfrac{1}{2}}



Bons estudos!
Perguntas interessantes