Matemática, perguntado por Thais20, 1 ano atrás

Calcule a derivada abaixo:
 \int\limits { \sqrt{x} }(x+ \frac{1}{x})  \, dx

Soluções para a tarefa

Respondido por ArthurPDC
1
I=\displaystyle\int\sqrt x\left(x+\frac 1 x\right)\,dx\\\\
I=\int x^{\frac 1 2}\left(x+\frac 1 x\right)\,dx\\\\
I=\int x^{\frac 1 2}\cdot x\,dx+\int x^{\frac 1 2}\cdot \frac 1 x\,dx\\\\
I=\int x^{\frac 1 2+1}\,dx+\int x^{\frac 1 2}\cdot x^{-1}\,dx\\\\
I=\int x^{\frac 3 2}\,dx+\int x^{-\frac 1 2}\,dx\\\\
I=\left[\dfrac{x^{\frac 3 2+1}}{\frac 3 2+1}\right]+\left[\dfrac{x^{-\frac 1 2+1}}{-\frac 1 2+1}\right]+C\\\\
I=\left[\dfrac{x^{\frac 5 2}}{\frac 5 2}\right]+\left[\dfrac{x^{\frac 1 2}}{\frac 1 2}\right]+C

I=\dfrac{2}{5}x^{\frac 5 2}+2x^{\frac 1 2}+C\\\\
\boxed{\displaystyle\int\sqrt x\left(x+\frac 1 x\right)\,dx=\dfrac{2}{5}x^{\frac 5 2}+2x^{\frac 1 2}+C}
Perguntas interessantes