Matemática, perguntado por valdireneBatista, 1 ano atrás

calcular Integral (sen3xcos2x - cos3xsen2x)dx

Soluções para a tarefa

Respondido por vitorcodeco
0
= (cos(u))/10+1/2 integral sin(x) dx+1/2 integral sin(5 x) dx+1/2 integral sin(x) dx

= 1/10 integral sin(s) ds+(cos(u))/10+1/2 integral sin(x) dx+1/2 integral sin(x) dx
= -(cos(s))/10+(cos(u))/10+1/2 integral sin(x) dx+1/2 integral sin(x) dx
= -(cos(s))/10+(cos(u))/10-(cos(x))/2+1/2 integral sin(x) dx
= -(cos(s))/10+(cos(u))/10-cos(x)+constant
= (cos(u))/10-cos(x)-1/10 cos(5 x)+constant
= -cos(x)+constant


Perguntas interessantes